
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

Approved for public release; distribution is unlimited

AN EXPLORATORY ANALYSIS OF WATERFRONT
FORCE PROTECTION MEASURES USING SIMULATION

by

Matthew D. Childs

March 2002

 Thesis Advisor: Arnold H. Buss
 Second Reader: Matthew G. Boensel

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2002

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Title (Mix case letters)
An Exploratory Analysis of Water Front Force Protection Measures Using
Simulation
6. AUTHOR(S) Matthew D. Childs

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Since the USS Cole incident in October 2000, and particularly since the terrorist attacks of September 2001, Force Protection
has become a fundamental issue. Of particular concern to the Navy is waterfront Force Protection: the protection of in-port
High Value Units from attacks from the sea. The unpredictability of when or how a terrorist attack might be executed makes
simulation an excellent tool for analyzing the waterfront force protection issue quantitatively. This thesis develops and
implements a simulation model of Patrol Boats at the Naval Submarine Base in Bangor, Washington using Java and Simkit,
both of which are platform independent, and therefore universally usable. The simulation is run pitting eight different notional
Patrol Boat configurations (varying the number of patrol boats used, their intercepting and patrolling speeds, and their
patrolling patterns) against eight notional terrorist attacks. The results of the simulation runs are analyzed, and general
conclusions are drawn. The results indicate that the number of patrol boats used in an area and the speed they use to intercept
threats are the most important factors of the four analyzed. Patrolling speed and patrolling patterns are found to be
insignificant.

15. NUMBER OF
PAGES 115

14. SUBJECT TERMS
Force Protection, Simulation, Simkit, Modeling

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

AN EXPLORATORY ANALYSIS OF WATER FRONT FORCE PROTECTION
MEASURES USING SIMULATION

Matthew D. Childs

Lieutenant Commander, United States Naval Reserve
B.S., United States Naval Academy, 1989

M.A., University of Maryland (College Park), 1990

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
MARCH 2002

Author: Matthew D. Childs

Approved by: Arnold Buss, Thesis Advisor

Matthew Boensel, Second Reader

James Eagle, Chairman
Operations Research Department

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

 Since the USS Cole incident in October 2000, and particularly since the terrorist

attacks of September 2001, Force Protection has become a fundamental issue. Of

particular concern to the Navy is waterfront Force Protection: the protection of in-port

High Value Units from attacks from the sea. The unpredictability of when or how a

terrorist attack might be executed makes simulation an excellent tool for analyzing the

waterfront force protection issue quantitatively. This thesis develops and implements a

simulation model of Patrol Boats at the Naval Submarine Base in Bangor, Washington

using Java and Simkit, both of which are platform independent, and therefore universally

usable. The simulation is run pitting eight different notional Patrol Boat configurations

(varying the number of patrol boats used, their intercepting and patrolling speeds, and

their patrolling patterns) against eight notional terrorist attacks. The results of the

simulation runs are analyzed, and general conclusions are drawn. The results indicate

that the number of patrol boats used in an area and the speed they use to intercept threats

are the most important factors of the four analyzed. Patrolling speed and patrolling

patterns are found to be insignificant.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. AREA OF RESEARCH ..1
B. CONTEMPORARY NAVAL FORCE PROTECTION ISSUES................2
C. OBJECTIVES AND RESEARCH QUESTIONS ...3
D. SCOPE OF THESIS AND METHODOLOGY ..4

II. SERVER AND MOVER EVENT BASED SIMULATION7
A. OBJECTS, DISCRETE EVENT SIMULATION AND EVENT

GRAPHS ...7
B. COMPONENT BASED PROGRAMMING AND SIMKIT......................13
C. MULTIPLE SERVER QUEUES AND MOVERS16

III. MODEL DEVELOPMENT ..23
A. MODEL COMPONENTS ...23

1. Mover Managers ..24
2. Contact Generators ..27
3. TerroristMoverManager...29
4. PBMM...30
5. PBController...33
6. BreachSensor..36

B. OTHER CONSIDERATIONS..37
1. Face Verification and Validation: Assumptions37
2. Graphics ..40

IV. MODEL RUNS AND ANALYSIS..43
A. EXPERIMENTAL DESIGN...43

1. Fundamentals: Repeatability and Replication...............................43
2. Statistics ..46

a. Number Intercepted ..46
b. Range at Intercept...46
c. Number of Available Patrol Boats..46
d. Number of Leakers..47
e. Number of Terrors ..47
f. Number of Breaches ...47
g. Average Number in Queue ...47

3. Run Setup: Fractional Factorial Design ..47
B. RESULTS AND ANALYSIS ..53

1. "Terrors" Regression Models...55
2. "Leakers" Regression Models ..61
3. "Breaches" Regression Models ..62
4. "Range at Intercept" Regression Models ..64

V. CONCLUSIONS AND RECOMMENDATIONS...67
A. ANALYTICAL CONCLUSIONS ..67
B. RECOMMENDATIONS...68

 viii

C. FOLLOW-ON WORK ..68

APPENDIX A. JAVA CODE FOR THREAT INTERCEPT POINT.....................71

APPENDIX B. DESIGN POINT DATA ..75

APPENDIX C LINEAR REGRESSION...83

APPENDIX D. OUTPUT GRAPHICS ...85

LIST OF REFERENCES ..95

INITIAL DISTRIBUTION LIST...97

 ix

LIST OF FIGURES

Figure 1. Force Protection Posture Sub Base Bangor Waterfront. After [Ref. 11]5
Figure 2. Fundamental Event Graph Construct ...10
Figure 3. Event Graph of the Arrival Process with Run ...11
Figure 4. Event Graph of the Multiple Server Queue ...12
Figure 5. Major Simulation Components and Listening Pattern.....................................23
Figure 6. PathMoverManager Event Graph (major elements) ..25
Figure 7. LoitererGenerator Event Graph (major elements) ...28
Figure 8. TerroristMoverManager Event Graph (major elements)30
Figure 9. PBMM Event Graph (major elements) ..32
Figure 10. PBController Event Graph (major elements)...34
Figure 11. BreachSensor event graph..37
Figure 12. Graphical Display of Simulation with Notation Added...................................41
Figure 13. Patrol Patterns: 4 PB's with bow-tie pattern and 2 PB's with barrier pattern

shown ...50
Figure 14. Attack by One Dumb Terrorist ..50
Figure 15. Synchronized Attack by Two Smart Terrorists ...51
Figure 16. Coordinated Attack by One Smart and One Dumb Terrorist51
Figure 17. Graphical Confirmation of Mean Regression Result57
Figure 18. Graphic Showing the Advantage of Four Patrol Boats Over Two57
Figure 19. Graphic Showing the Advantage of Higher Intercept Speed58
Figure 20. Changes in Patrolling Speed Have No Effect Upon Output58
Figure 21. Changes in the Patrol Pattern Have No Effect Upon Output59
Figure 22. No Interaction Between Significant Factors ..59
Figure 23. Relative Effects of Significant Factors Upon P(terror) Outcome60
Figure 24. Design Point Six Always Best ...85
Figure 25. Advantage of Four Patrol Boats Over Two ...85
Figure 26. Advantage of Higher Intercept Speed ..86
Figure 27. No Clear Difference In Output ...86
Figure 28. No Clear (Significant) Difference in Output ..87
Figure 29. No Interaction Between Significant Factors ..87
Figure 30. Design Points Six and Eight Are Best ...88
Figure 31. Advantage of Four Patrol Boats Over Two ..88
Figure 32. Advantage of Higher Intercept Speed ...89
Figure 33. No Clear Difference in Output...89
Figure 34. No Clear Difference in Output...90
Figure 35. No Interaction Between Significant Factors ..90
Figure 36. Design Points Six and Eight Are Best ...91
Figure 37. Advantage of Four Patrol Boats Over Two ..91
Figure 38. Advantage of Higher Intercept Speed ...92
Figure 39. No Clear (Significant) Difference in Output ..92

 x

Figure 40. No Clear Difference in Output...93
Figure 41. No Interaction Between Significant Factors ..93

 xi

LIST OF TABLES

Table 1. Representation of Repeatability and Replication within an Experiment44
Table 2. Fractional Factorial Design of Complete Experiment52
Table 3. Output Data for Design Point One ...53
Table 4. Data for Regression Model for "Terrors" Statistic ...55
Table 5. Regression Output for "Terrors" Mean..56
Table 6. Regression Output for "Terrors" Total Variance ...61
Table 7. Data for Regression Model for "Leakers" Statistic ...61
Table 8. Regression Output for “Leakers” Mean...61
Table 9. Regression Output for “Leakers” Total Variation ...62
Table 10. Data for Regression Models for "Breaches" Statistic62
Table 11. Regression Output for “Breaches” Mean...63
Table 12. Regression Output for “Breaches” Total Variance ..63
Table 13. Data for Regression Models for “Range at Intercept” Statistic64
Table 14. Regression Output for “Range at Intercept” Mean..64
Table 15. Regression Output for “Range at Intercept” Total Variance65
Table 16. Design Point One Data...75
Table 17. Design Point Two Data ..76
Table 18. Design Point Three Data ..77
Table 19. Design Point Four Data..78
Table 20. Design Point Five Data ..79
Table 21. Design Point Six Data ..80
Table 22. Design Point Seven Data ...81
Table 23. Design Point Eight Data...82

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGMENTS

I would like to thank CDR Matthew Boensel for his careful reading and editing,

and especially for his brutal honesty when I least wanted to hear it.

I would like express my gratitude to Professor Arnold Buss for his hours of

coding assistance into the wee hours of the morning, helping me to transform the

shadows of an idea into a reality—albeit a virtual one.

I would like to thank my wife, Kelly, and my children, Eliot, Austin, Isabella, and

Helena—born in the midst of it all—for their patience with Daddy’s absences.

I would most of all and always wish to express my deepest gratitude to Our Lady,

the Seat of Wisdom, for her intercession on my behalf in helping me through the past two

years intact: Figlia del tuo figlio, Queen of Heaven.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

EXECUTIVE SUMMARY

The terrorist attacks of 11 September 2001 have made it clear that Force

Protection must be a primary concern for our military force commanders. The threat of

attacks on US soil is now a reality. Just as real is the threat of attacks on US waterways,

and specifically upon in port high value US Naval units. Ships that are very potent

weapons upon the high seas are very vulnerable targets when tied to piers. Analysis of

the use of waterborne force protection assets--specifically patrol boats--can provide

valuable insights into how high value Naval units can be effectively protected from

attacks from the sea.

This thesis undertakes such an analysis using simulation. The specific setting of

its analysis is Naval Submarine Base, Bangor, Washington, but the simulation can be

applied to any waterfront area to allow for analysis of patrol craft operations. Simulation

is an analysis tool especially suited to the terrorist attack problem, since terrorist attacks

follow no particular (deterministic) patterns. Simulation, in this setting, allows for data

collection in the absence of real data, by generating scenarios of interest, and seeing how

patrol boats fare. Insofar as parameters--such as patrol boat speed, traffic intensity, and

terrorist attack tactics--used within a simulation model are accurate reflections of reality,

the results of the model provide real insights into force protection effectiveness.

The simulation within this thesis uses state-of-the-art techniques and software to

model the waterfront at Sub Base Bangor. The basic waterfront is modeled, and is

populated with patrol boats and randomly arriving and maneuvering vessels (i.e. traffic).

Patrol boats remain in their patrolling patterns at low patrolling speeds, unless a contact

moves inside the waterfront’s exclusion zone, at which time a patrol boat accelerates to

intercept it. After a time delay, a terrorist attack is attempted by either one or two attack

craft--which, of course, are not known to be attack craft. Within the model, patrol boats

are deployed in eight different configurations (varying their numbers, patterns and

speeds) to protect the base’s “delta” pier at which Trident submarines are moored. Each

of the different patrol boat configurations is run a number of times against eight different

kinds of notional terrorist attacks, differing in the number of attackers and their

 xvi

approaches. In this way, the patrolling tactics can be compared across the same range of

challenges so more successful configurations can be identified.

Analysis of the simulation output provided useful insights. Specifically, the

model runs indicated that the keys to successful defense of the pier against a range of

terrorist attacks are increasing the number of patrol boats deployed--to the maximum of

four analyzed within the model--and increasing the speed at which the patrol boats

intercept targets identified as threats. It may seem a computer simulation is not necessary

to produce that insight. However, analysis of the simulation also indicated that neither

patrolling speed (analyzed at two and five knots) nor the patrolling pattern (analyzed as a

barrier and a bow tie or race track) of the boats had a significant effect upon outcomes.

This implies that simple patterns and low patrolling speeds can be used. Both results

have practical import for operators and equipment. A simple pattern allows for more

concentration upon contact monitoring, and slower speeds may well result in greater fuel

efficiency and fewer maintenance needs.

Analysis of the notional data was accomplished both through linear regression

and, somewhat more intuitively, through graphical displays using a spreadsheet.

Enhancements to the simulation could allow decision makers to run the model directly,

defining simulation parameters. The exploratory analysis of the thesis can be used as a

guide for analyses of patrol boat configurations using real data. Hence, in addition to the

insights gained through the aforementioned analysis, the thesis provides both a tool and a

methodology for analyzing the waterfront force protection problem.

1

I. INTRODUCTION

A. AREA OF RESEARCH

In recent times, attention has been being drawn to the threat of asymmetric and

specifically terrorist attacks upon US military targets. Both JV 2020 and the 1997 Report

of the National Defense Panel, Transforming Defense: National Security in the 21st

Century, cite asymmetric threats as a primary concern for strategy and force planning

considerations in the twenty-first century. JV 2020 posits that in the face of US

conventional force dominance “the appeal of asymmetric approaches and the focus on the

development of niche capabilities will increase”[Ref. 1; p. 4]. The National Defense

Panel, in like manner, notes that would-be aggressors “may find new ways to attack our

interests, our forces, and our citizens”[Ref. 2; p. 11]. Other literature concerned with the

emerging nature of warfare—what we can now call “postmodern” warfare—is even more

blunt and stark about what we must be able to defend and/or fight against in our times.

Martin van Crevald, in discussing postmodern warfare writes: “War will not take place in

the open field . . . Its normal mise en scene will be complex environments, either those

provided by nature or else the even more complex ones created by men. It will be a war of

listening devices and of car-bombs. . .”[Ref. 3; p. 626]. Carter et al., in their article

Catastrophic Terrorism, raise the specter of large-scale terrorist attacks and call for

counter-terrorist systems and postures that “highlight defensive needs before an incident

happens”[Ref. 4; p. 83]. The terrorist attacks in New York, Washington, and

Pennsylvania in September 2001 have certainly made the fact of the terrorist threat real,

and their targeting of civilian centers adds universality to the struggle against terrorism,

which is no longer to be confined to military arenas. They also made clear that we have

not adopted the proper pro-active deterrent or defensive posture, at least at the national

level. The war that those 11 September attacks began can only be waged effectively if

proper force protection measures are established that can provide good defense in safe

havens (e.g. ports) while offensive strikes are carried out elsewhere. Those measures

need to be developed not by best guesses, but by specifically tailored quantitative

analyses that can provide the best possible fo rce protection measures for a given location

2

under specified operating conditions, assumed threat dispositions, and defined rules of

engagement.

B. CONTEMPORARY NAVAL FORCE PROTECTION ISSUES

The 11 September attacks notwithstanding, we have known for quite some time,

and very specifically since the USS Cole incident of October 2000, that high value and

highly visible Naval targets are vulnerable to terrorism (particularly when in port), and

that more robust force protection measures must be put in place. In his discussion of the

Cole incident and recommendations made in its aftermath, retired Admiral Harold W.

Gehman Jr. confirmed that van Crevald’s description of the postmodern, asymmetric and

terrorist age of warfare is accurate and will remain so: “The Cole was attacked by a truck

bomb. It had an outboard motor, but it was a truck bomb . . . So what is the next attack

going to look like? It is going to be a truck bomb in daylight, and it is going to be applied

in some new and different way . . . Essentially, the bottom line of our force protection

recommendations was to raise the cost of doing business in high threat areas”[Ref. 5].

Adm. Gehman’s conclusion was disastrously borne out by the “truck bombs” that flew

into the Trade Center towers and the Pentagon, so it stands to reason that our force

protection efforts must be re-doubled to defend against that very sort of physical attack.

David Weeks further focuses our attention upon the waterfront: “Since the devastation at

Khobar Towers in 1996, the U.S. armed forces had dramatically increased their force

protection and antiterrorism posture. Unfortunately for the Navy, the effort centered on

the area from the main gate to ship quarterdecks, with very little attention paid to security

from the waterside of the fleet—the gap, or ‘seam,’ referred to by former Secretary of

Defense William Cohen in his introduction to the Cole Commission Report”[Ref 6].

Even prior to 11 September, the Chief of Naval Operations (CNO) had directed

Commanders to re-enforce that seam. His guidance clearly shows that force protection

of vital naval assets is a primary and pervasive concern: “Force Protection considerations

must become a primary planning factor for every mission, activity, or event—in-CONUS

or out-of-CONUS. All commanders and commanding officers must fully integrate this

key enabling factor into every operation.” [Ref. 7]. Force Commanders have, in fact,

begun to address the gap. In particular, Commander Submarine Forces Atlantic

3

(ComSubLant) and Commander Submarine Forces Pacific (ComSubPac) have focused

their attention—particularly after the Cole incident—upon Trident Class or, more

generally, Ballistic Missile Nuclear Submarine (SSBN) in-port Force Protection

measures. To this end the Johns Hopkins Applied Physics Laboratory was contracted by

the Chief of Naval Operations Submarine Division, Science and Technology Branch

(N775), to develop the In-Port/Near-Port Project, which was launched to improve force

protection of US ballistic missile submarines:

The In-Port/Near-Port Project is a new project focusing exclusively on in-
port and near-port asymmetric vulnerabilities of the SSBN force. Four
tasks—[1]vulnerability characterization, [2]vulnerability assessment,
[3]countermeasures assessment and concept development, and [4]risk
assessment, comprise this project...The Countermeasure Assessment and
Concept Development Task will assess existing countermeasures and
develop new operational countermeasure concepts. Recommendations
may range from changes in operating procedures to new systems
concepts...[Ref. 8].

The message traffic from Sub Base Bangor after the 11 September attacks makes

it clear force protection analyses already underway have a new sense of relevance and

urgency:

On September 11th the world changed. The terrorist attacks against the
citizens of our country painfully revealed the vulnerabilities of freedom.
As Commanding Officers, you need to be thinking about the
vulnerabilities of your ship and crew. 2. The day to day readiness of the
Trident Submarine Force to conduct its assigned mission is a critical
element of our nation’s security. Survivability has always been our top
priority, but now, we must evaluate our practices for relevance. You
trained you crew for the ASW [Anti-Submarine Warfare] threat, you now
have the challenge to prepare them to deal with terrorism. Make no
mistake about it, the terrorist threat is real. [Ref. 9]

C. OBJECTIVES AND RESEARCH QUESTIONS

Clearly, the overarching fleet force protection objective is effective protection of

vital pier-side assets. The objective of this thesis is to contribute to that overall effort by

quantifying the basic elements of waterfront force protection assets, possible waterborne

attackers, and their interaction through a model/simulation. This effort is meant to

augment and complement the Johns Hopkins effort. The Johns Hopkins database is a

4

useful descriptor of base layout and extant force protection assets and procedures, but it

provides no calculation, recommendations or analyses to increase force protection

effectiveness. It does nothing substantial to address the third (countermeasures

assessment and concept development) and fourth (risk assessment) tasks of the In-

Port/Near-Port Project. This thesis investigates steps that can be taken to strengthen

waterfront force protection at Sub Base Bangor, WA, the homeport of Trident

Submarines (SSBN’s) under Commander Submarine Group Nine (CSG-9). To help

CSG-9—and by extension any waterfront commands and even, more broadly, any

specific location—more effectively and proactively protect assets, a method of analyzing

different force protection configurations’ effectiveness against a distribution of possible

attacks must be developed.

By focusing upon specific geographies and feasible force distributions at specific

waterfront locations, a limited number of possible scenarios can be subjected to

quantitatively meaningful analysis. Even so, the terrorist attack problem presents a

difficulty to the analyst. Because of the random and isolated nature of terrorist attacks,

there simply are no data sets describing the effects of terrorist attacks, per se, on a given

kind of target. All one can say is how harmful a given, unrepeated—and often

unrepeatable—attack was; one cannot generate statistics. The terrorism problem, in other

words, cannot be analyzed using traditional means. The best hope one has in

meaningfully dealing with the very real threat of waterfront terrorist attacks

quantitatively is through simulation[Ref. 10; p. 91]. This thesis will develop such a

simulation to allow investigative analysis of force protection asset configuration and

thereby address the tasking of N775 to “assess existing countermeasures and develop

new operational countermeasure concepts.”

D. SCOPE OF THESIS AND METHODOLOGY

The simulation will give insight into the potential success of defensive patrol boat

units in response to different terrorist threats. It will, therefore, serve as an exploratory

tool in the development of patrol and tactical approaches under geographical and

equipment constraints and existing rules of engagement. The simulation will make it

5

possible to compare different tactical approaches under the given MOE of preventing any

successful intercept of an SSBN by a Threat, and to determine if different tactics lead to

statistically different outcomes. The simulation will not and cannot predict either the

onset or outcome of an attack; but it can be used effectively to gain insight into robust

force protection postures and resource needs by focusing on the waterborne element, and

to demonstrate what kinds of analyses can be accomplished with its output.

The physical basis of the model is the waterfront geography at Naval Submarine

Base Bangor, Washington, centered on the “Delta” pier at which SSBN’s are moored.

Figure 1. Force Protection Posture Sub Base Bangor Waterfront. After [Ref. 11]

The geography is modeled as a rectangle defined in its length (North-South axis)

by sensor capacity and in its width (East-West axis) by the width of the river. CSG-9

initially had up to two contracted patrol boats on guard duty in the vicinity of Delta Pier.

In the aftermath of 11 September, more assets have been committed. Exploratory analysis

of the utilization of the boats is the primary focus of the simulation, though their

�

o

Random Beach Patrols
w/ Military Working Dogs

¤

¤

³
³³

³

³
¥

o

³

³

Patrol Craft
(24x7)

Patrol Craft

DELTA
PIER

MARGINAL
PIER

EHW- Non-Secure Comms³

Sonar

Radar
TIS/VIS

Delta Gate Guard

ex-YTBs

³

õ

Harbor OPS Tower
- 1 Harbor OPS Watch (24x7)
- 1 Additional watchstander (24x7)
- Radar, TIS/VIS & Sonar Monitors
- C3 improvements

��

p
Patrol Car

N

�

o

Random Beach Patrols
w/ Military Working Dogs

¤

¤

³³
³³³³

³³

³³
¥

o

³³

³³

Patrol Craft
(24x7)

Patrol Craft

DELTA
PIER

MARGINAL
PIER

EHW- Non-Secure Comms³³

Sonar

Radar
TIS/VIS

Delta Gate Guard

ex-YTBs

³³

õ

Harbor OPS Tower
- 1 Harbor OPS Watch (24x7)
- 1 Additional watchstander (24x7)
- Radar, TIS/VIS & Sonar Monitors
- C3 improvements

��Harbor OPS Tower
- 1 Harbor OPS Watch (24x7)
- 1 Additional watchstander (24x7)
- Radar, TIS/VIS & Sonar Monitors
- C3 improvements

��

p
Patrol Car

NN

6

performance is closely tied to detection equipment, the location and performance of

which can be varied with model expansion to a non- line of sight problem.

The model will be implemented in Java[Ref. 12] and Simkit[Ref. 13]. These are

both freely available tools and can be executed on any operating system, thanks to Java’s

platform independence. Simkit is the result of earlier work done at the Naval

Postgraduate School by K. Stork in his thesis, Sensors in Object Oriented Programming

with Java: An Introduction. [Ref. 14]

7

II. SERVER AND MOVER EVENT BASED SIMULATION

A. OBJECTS, DISCRETE EVENT SIMULATION AND EVENT GRAPHS

The Force Protection simulation described herein is written in Java, an object-

oriented language. Object-oriented programming languages stand in contrast to

imperative programming languages or structured programming languages, like

FORTRAN or BASIC. [Ref. 15; p. 15] The essential characteristic of object-oriented

programming, and that which makes it a natural fit for simulation, is that it "considers a

problem to consist of collections of objects and the various interactions between them.

These objects often model artifacts that are present in the real world [Ref. 15; p. 35]. The

objects within a program can assume a state and transition from one state to another

based upon what happens in the simulation. Object-oriented programming is therefore

ideal for simulation implementation because it has an intuitive correspondence with the

reality being modeled. It is much more sensible, for example, to develop a simulation of

Patrol Boats against Threats using objects called Patrol Boats and Threats, which behave

in certain programmed ways, than to deal with mere variables or mathematical

expressions. Beyond that, object-oriented programming allows for the re-use of given

objects, or software components, because objects are self-contained entities that can

either be used in different simulations as they stand, or be adapted or "extended," in

Simkit terms, to fit a role only slightly different from a previous function. Because

object-oriented programming models problems in terms of objects transitioning from one

state to another, it lends itself to Discrete Event Simulation, which is really nothing more

than what it says (simulation realized through the tracking of successive events) and is

specifically the time –varying state of a simulation's component objects.

The following general discussion is based upon Law and Kelton [Ref. 10] and

Buss [Ref. 16]. Discrete Event Simulation (DES), or modeling, is built upon two

fundamental elements, “a set of state variables, and a set of events” [Ref. 16]. The state

variables as a collective do what their name suggests: they define the state of the system

being modeled at any given time. The choice of state variables in any DES is very

important because those variables alone will be what represent the reality being

modeled—the variables chosen, in other words, must be sufficient to capture the

8

important features or components of the simulated reality. The events in a DES are the

changes the state variables undergo at specific (instantaneous) moments in time. Most

events change the state of the system, while others do not—the event that stops a

simulation, for example, has no effect on the state variables. A DES simulates the reality

or system being modeled by generating “state trajectories,” or plots of state variable

values over time. These state trajectories provide statistics for state variables that allow

analysis of system—and, by extension, system component—performance. The way a

system performs relies entirely upon when and how frequently various events occur. In

fact, unless one wishes to simulate total inactivity, it is precisely the timing of successive

events undertaken by key elements (read state variables) that defines the entire

simulation. Hence, for the two components of DES actually to be a simulation, they must

have some sort of engine, some scheduler by which a simulation moves from potens to

actus. This engine is the Future Event List.

Buss puts the matter succinctly: “the Future Event List (or simply the Event List) .

. . is nothing more than a ‘to-do’ list of scheduled events”[Ref. 16]. As with all to-do

lists, it is constantly being changed or updated based upon current events—like the

meeting that becomes necessary between your next two appointments as a result of the

phone call you just received. The future event list is perhaps the singular feature—from

whence it derives its name—of DES that distinguishes it from time-stepped simulation, in

that it advances simulation time at varying intervals determined by scheduled events

rather than advancing time in constant sized steps regardless of whether anything is

happening in the simulation at the next regular time step or not. In DES, progress is

driven by events, not time. The timing of events is certainly vitally important, since it

affects the relative state trajectories of the systems’ components, and therefore the state of

the system at large; but that very timing is a function of events that need to be

accomplished. Because of the event list, a Discrete Event’s Simulation’s progress is

actually very conceptually simple; it just moves from one event to the next event on the

Event List until there are no events left—or until it is told to execute an event that tells it

to stop. In other words, at any single moment, a DES is only concerned, so to speak, with

the event being executed and the next scheduled event: its field of vision is one event

9

long—this is the very reason Event Graphs are so useful in describing DES, as discussed

below. Law and Kelton summarize the Event List driven progress of a DES quite nicely:

The simulation clock in initialized to zero and the times of occurrence of
future events are determined. The simulation clock is then advanced to
the time of occurrence of the most imminent (first) of these future events,
at which point the state of the system is updated to account for the fact that
an event has occurred, and our knowledge of the times of occurrence of
future events is also updated [note that the event is instantaneous]. Then
the simulation clock is advanced to the time of the (new) most imminent
event [which may have been scheduled upon execution of the last event
and inserted before all others in the list], the state of the system is updated,
and future event times are determined, etc. [Ref. 10]

This DES process is more efficiently captured by the discrete event algorithm, by

which the future event list is managed. In pseudo-code the algorithm looks something

like this:

While (Event List is not empty)

Advance time to next event

State transition for event

Remove event from list

Schedule other event(s) (if necessary)

Event graphs are the most efficient means of showing how an event-based

simulation is constructed. They allow for graphical abstraction of event-based models, “a

way of representing the Future Event List logic for a discrete-event model"[Ref. 18]. The

event graph was first developed by L. Schruben in 1983 [Ref. 17] and is discussed in

detail by A. Buss. Buss has specifically used the event graph construct in demonstrating

some of the basic functionality of Simkit, which is the simulation program used in this

thesis.

As with DES, event graphs have two essential elements, in this case nodes and

directed edges: “Each node corresponds to an event, or state transition, and each edge

corresponds to the scheduling of other events. Each edge can optionally have an

associated Boolean condition and/or a time delay"[Ref. 17 and Ref. 18]. The construct

10

demonstrates the progression through the Event List as described above, by presenting

the movement from one event to the next pictorially. The inclusion of conditions and

time delays allows for a virtually complete demonstration of a program's logic without

the necessity of having recourse to the code that implements it. The linking of a number

of Event Graphs is an ideal way to show not only the flow within a given program or

"class" of a simulation, but as well the linking and interaction of component classes of

that program, which is vital in both the development and presentation of an object-

oriented environment, and will be discussed further below. The most basic relationship

of Events is demonstrated by “the fundamental event graph construct:”

Figure 2. Fundamental Event Graph Construct

Nodes A and B represent events or methods. The small t shows there is a time

delay, and the wavy line on the edge shows there is a Boolean condition, (i), that must be

met for event B to occur. Hence, the construct as a whole says that the occurrence of

Event A causes Event B to be scheduled for execution after a time delay of t, provided

the logical condition (i) is met.

Once the fundamental event graph is understood, other event graphs are,

relatively easily, recognized as extensions of that principle construct. Once again, the

important point is that any event graph is simply an abstraction of the events of an Event

Based Simulation, which in turn means it is simply an illustration of how and in what

order Events are placed on the Future Events List. Anything that a modeler wants to

have happen in a given simulation can happen only if it is scheduled, and it will only be

scheduled if the programmer has provided a method to schedule it. Once again the power

of the Event Graph is a clear help: the only way an event can occur is if there is a directed

11

path of scheduling edges from the Run event to it. Two more specific Event Graphs will

provide sufficient background for specific application to the PatrolBoat model. Both are

pictures of general processes or classes that are fundamental to the Force Protection

simulation. The first is the “Arrival Process,” which, as the name suggests, simply

“does” arrivals: it is a class that counts the number of arrivals of a given type of object

onto the stage of a simulation, and schedules follow-on arrivals.

Figure 3. Event Graph of the Arrival Process with Run

In this case, the Arrival Process is shown with the “Run” method attached. The

Run method is a vital part of any Simkit simulation program, because it is the method

that indirectly resets state variables—as in this case, where “N”, the number of arrivals, is

set to zero—and schedules the simulation’s first event. The Arrival Process Event Graph

(with the Run method attached) is interpreted thusly: upon the execution of the Run

method, the number of arrivals, N, is set to zero, and the first Arrival is scheduled for—

placed on the Future Events List to occur at—time zero plus tA. Since there is no logical

condition to be met, the “do” Arrival method is executed, which means that at time tA the

value of the state variable N is incremented a single unit and the next Arrival is scheduled

to occur at time zero, plus tA, plus tA. The process is simply repeated until the program is

halted as discussed above.

The second basic embellishment of the Basic Event Graph Construct (which

includes that of the Arrival Process) is the Event Graph of the Multiple Server Queue—

the driving conceptual construct of the PatrolBoat simulation.

tA
Run Arrival

{N = 0} {N++}

tA

tA
Run Arrival

{N = 0} {N++}

tA

12

Figure 4. Event Graph of the Multiple Server Queue

Model specifics about the Multiple Serve Queue model are given below. As for

the Event Graph itself, the interpretation is as follows: the Run method resets the state

variables Q (number of waiting customers) and S (the number of available servers) to

their initial levels and schedules an Arrival as with the Arrival Process Above. The

Arrival Process, in turn, does what it always does—it increments the number of Arrivals,

or, in this case, the number of customers in line, and schedules the next Arrival. Now,

however, the Arrival Process is attached to another event: the beginning of a Service.

There is no time delay on the edge connecting the Arrival method and the Start Service

method, but there is a logical condition that says a Start Service event can only be

scheduled if there is at least one Server Available (if S > 0). If that condition is met—a

condition tested by an “if” statement within the Arrival event—then a Start Service event

is put on the Event List with a zero time delay. Upon the event Start Service (which

takes place instantaneously), the state variable for the number of customers in line (Q) is

decremented, as is the number of available Servers (S)—since the customer being served

is no longer in line, and the Server who was available to serve that customer is now

serving him, and therefore no longer available—and an End Service event is

automatically scheduled for a time ts after the Service began. Note there is no Boolean

condition, so any Start Service will automatically schedule an End Service. After the

service time, ts, has elapsed the End Service event is executed, whereby the “S” changes

state again, indicating another Server is available, and an “if” statement is used to

Arrival

{Q++}

Run Start
Service

End
Service

{Q = 0, S = k}

tAtA
t
S(S > 0)

{Q--, S--} {S++}
(Q > 0)

Arrival

{Q++}

Run Start
Service

End
Service

{Q = 0, S = k}

tAtA
t
S(S > 0)

{Q--, S--} {S++}
(Q > 0)

13

schedule an immediate Start Service Event if there are any customers in line—Q > 0, as

indicated by the condition on the scheduling edge connecting those two Event nodes.

B. COMPONENT BASED PROGRAMMING AND SIMKIT

An application of the programming concepts discussed to this point is achieved in

Simkit, the simulation software package developed by Buss at the Naval Postgraduate

School (NPS). The following discussion is derived from the full treatment of the subject

in Component-Based Simulation Modeling [Ref. 19]. Simkit "uses Event Graphs as [its]

underlying methodology", which means it is a DES package. Simkit is also "component

based," which essentially means it extends the basic idea of object oriented programming.

Programming in components is very much like programming with objects, but one level

higher. Where objects are the fundamental building blocks of an object-oriented

program, components, which contain objects within them, are the building blocks of

more complex inter-connected programs or simulations. Within any single program or

class or component, action is executed directly within the body of the program. For

components to interact with other components there must be some means of connectivity,

even though the component programs themselves are encapsulated. Simply stated,

certain components within a simulation (for example a Patrol Boat Controller, someone

who coordinates the movements of Patrol Boats) need to be able to "see" or "hear" the

actions of certain other components (for example, the Patrol Boats a Patrol Boat

Controller controls) in order to execute their functions within a simulation at the proper

time or sequence. Writing long, complex chunks of code to connect components

explicitly is not only tedious, but undermines a central premise of the object-oriented

design, which is that of encapsulation. What is necessary is the "coupling" of different

components, a means of allowing components to interact or respond to each other as

required without linking components too dir ectly—this "loose coupling" is a concept

being developed at NPS and is the distinction between, as Buss puts it "simply designing

with components and Component-Based design."

Loose coupling is achieved within Simkit in two ways, one of which is inherent to

Java, and the other of which is specific to Simkit. Java includes a ProperyChangeEvent

and PropertyChangeListener interface that signals or "fires" a change in state for a

14

variable upon the execution of a certain action within a program—for example, the

addition of a customer to a queue in a service model fires a change in the size of the

queue. The change event is "heard" by any object or class that has been registered as a

change listener to that event. Simkit uses this feature of Java to keep track of the state

trajectories throughout a simulation run so that statistics can be gathered and analysis

performed. To that end, the objects generally registered as listeners to

PropertyChangeEvents are statistics-gathering objects or programs called "SimpleStats"

objects in Simkit.

The second kind of coupling or listening pattern that is unique to Simkit is called

the SimEventListener pattern, which is especially useful when it is necessary to know

when an event has occurred. In fact, it is the SimEventListener pattern that allows a

Simkit component based program to function at all, since it is that pattern that causes

follow-on events to be scheduled upon completion of current events, thereby populating

the Event List and generating the Discrete Event Simulation. "The SimEventListener

pattern involves an event that has been executed by the Event List. It consists of the

source of the event (the SimEntity [the Simkit specific object or class of objects] that

scheduled it) multicasting the same SimEvent to registered SimEventListeners" [Ref. 19].

Hence, the capacity for an object to hear the event of another object is achieved through

registration, as with the PropertyChange construct, but in the SimEventListener case, far

more can be accomplished after the event is fired, because notification, in this case, also

effects the execution of further actions within the listening class[es] or component[s].

The details are as follows, but the key point to be made is that the SimEventListening

pattern is what allows a Simkit simulation's components to interact simply through the

transfer of information from one entity to another, rather than through explicit commands

issued from one entity to another: it is the glue of loose-coupling.

The SimEventListening pattern manifests the DES process described above as

follows. Events, or specifically "SimEvents," are placed on the Event List when a

component object or class (a SimEntity) within the simulation executes the method

waitDelay(String, double, object). The "String" within the method invocation is the

name of the event to be placed on the event list. The name of the event that shows up on

the list has a precise correspondence to the name of the method that executes it; the

15

execution method is the name with a "do" in front of it—for example, an "Arrival," as

above, is actually executed within the code by actions programmed within a method

called "doArrival." The "double," a number, is the time until the named event will

occur—which is to say the time from the moment at which the waitDelay method is

called or executed. The "object" argument within the method invocation (which is not

required) allows specification of exactly which SimEntity is scheduled to undergo the

scheduled event. When the named event is executed, any other component within the

simulation that is both registered as a SimEventListener to the component that has

executed the event and has an execution method with the same name (with the "do"

attached) as the method being executed, will take whatever action is indicated in its own

"do" method. If an object was specified in the waitDelay scheduling method, then that

object is passed along to all listeners, thereby allowing the listeners to act upon or react to

that object.

An example of this pattern from the Force Protection simulation is the way in

which contacts are detected and evaluated. A contact's arrival into the river of the

simulation is effected by a doArrival method. Within the doArrival method a contact is

"started" which means a doStartMove event is scheduled via the waitDelay method. The

actual call is something like: waitDelay("StartMove",0.0,contact). Once the starting

maneuver event is executed, components registered to hear it, that also have a

doStartMove method, will be passed a reference to the contact that has started its move.

In particular, the component that is monitoring all river traffic (the PBController) now

has the capacity to know everything about the contact that can be known through

invoking the contact's native methods—to include its position and motion vector. With

that information the PBController can determine whether or not the contact is a threat,

and whether or not a Patrol Boat needs to be dispatched to intercept it. How the

evaluation and interception occur is largely the topic of chapter three; the point to be

demonstrated here is that the loose coupling of the contact with the PBController is made

possible through the SimEventListening pattern, and that loose coupling is sufficient to

the task of generating the event list of a DES.

16

C. MULTIPLE SERVER QUEUES AND MOVERS

The above basic Event Graphs and the Event-Based programming segments they

depict represent the critical conceptual building blocks of the PatrolBoat simulation. The

foregoing discussion described the mechanics of Discrete Event Simulation and

demonstrated the tools for presenting such a simulation’s abstraction. The interest here is

in presenting the model types that will be brought together to form the Force Protection

simulation. The driving model of the simulation is the Multiple Server Queue, presented

in Event Graph abstraction above. The Server model is the driver for the Force

Protection model because waterfront force protection assets are easily cast as Servers,

with incoming Threats as their customers. Upon the framework of the Multiple Server

Queue will be set “Server” and “Customer” objects (the PatrolBoat and Threat objects),

which are kinds of Movers. Mover objects are objects or SimEntities within the Simkit

package that allow for more complex actions and interactions of and between (or among)

the queuing model’s components. By embedding the dynamic interaction of Simkit

Movers within the Multiple Server Queuing model, a reasonable approximation of

waterfront Force Protection scenarios is achieved.

 Law and Kelton crystallize the queuing model in terms now, at least in part,

familiar: “A queuing system is characterized by three components: arrival process,

service mechanism, and queue discipline”[Ref. 10; p. 95]. The first component has

already been essentially described by way of the its Event Graph. The critical issue is the

timing of arrivals, the question of how and when customers enter the system. In the case

of unpredictable terrorist attacks, the arrivals must be random, hence the inter-arrival time

(tA) must be a random variable—which is easily set and easily changed in the input to the

simulation. According to Law and Kelton

the service mechanism for a queuing system is articulated by specifying
the number of servers . . . whether each server has its own queue or there
is one queue feeding all servers, and the probability distribution of
customers’ service times[Ref. 10; p. 95].

The Force Protection model is slightly more complex, since it must involve

service predicated upon assessment of prospective customers (i.e. threats) before they are

admitted as customers. Whereas in the basic model any object in the queue is and

17

remains a customer, in the Force Protection model, evaluation and prioritization will

intrude upon the normal service routine. The model must allow for the most obviously

threatening customers to be serviced first, and allow for the interruption of a service if the

current customer ceases to be a threat. In other words, the Force Protection adaptation of

the basic service model is a completely dynamic one. The last component of the queuing

system, queue discipline, is “the rule that a server uses to choose the next customer from

the queue (if any) when the server completes the service of the current customer”[Ref.

10; p. 95]. It is already clear that the Force Protection model will use “priority”

discipline in selecting the next customer—with highest priority going to the most

threatening (the closest) Mover object. What is also clear is that not every service that is

started will reach a “normal” conclusion simply based upon a service time. Service time

determination and the means of setting customer queuing priority, are highly dependent

upon the nature of Mover objects. Hence a brief discussion of movement is required.

It is clear that simulation of moving boats must be able to incorporate movement

and some sort of detection: the capacity for boats to move and for operators (either in the

boats or in the control tower or elsewhere) to “see” other boats on the water. Some of the

"detection" necessary in the model is achieved simply through the "listening" processes

within Java and Simkit described above. Other detection is less direct and dependent

upon the relative position of objects within the simulation space. Simkit provides for

movement and detection through its Mover and Sensor classes, which apply

straightforward mathematics to allow for modeling dynamic, interactive systems like the

waterfront scenario being modeled herein. Movement is easily described over time as a

function of speed and direction (i.e. a velocity vector). However, because discrete event

simulations do not move forward in time steps but rather event steps, modeling

movement in such simulations introduces the challenge of keeping track of the position

of an object that is constantly changing between events. This challenge is met through an

“implicit state” of the state variable.[Ref. 20] The implicit state notion rests upon the

simple fact that position is a function of velocity multiplied by time: “a moving entity

starts its move at some initial position x0 + (t – t0)v. Equivalently, the location of the

entity s time units after it began its movement is x0 + sv"[Ref. 20]. In other words, if an

18

object’s initial position and velocity—which of course means both speed and direction,

since it is a vector—are known, along with its start time, then its position at any known

time after the start time can be calculated at any time, given there has been no change in

its velocity. The value of the implicit state to the discrete event simulation environment

follows: changes in an entity’s movement are simply events or methods that determine

the future position of the entity until its next movement event. The implicit state is

highly leveraged within Simkit in the detection process, implemented through "Sensor"

objects by way of third party "Referees" and "Mediators" that prevent the Sensors from

knowing ahead of time when a Mover is going to enter its range.

The Patrol Boat movement application is somewhat different from the sensing

problem, but it, as well, relies upon the implicit state. A Patrol Boat's job, particularly in

the line of sight situation on the Sub Base Bangor riverfront, is not one of sensing, but of

evaluating and intercepting. Evaluation is easily accomplished and does not involve

movement per se, but interception of threats does. In reality, intercept points are

calculated using something like a maneuvering board or its electronic equivalent, by

determining a target's relative speed and direction over time and then adjusting one's

course and speed in order to intercept. The development of a target's relative behavior

with time is a time-stepped phenomenon and therefore not applicable to the discrete event

construct. Nonetheless, given a target's initial position and vector—which is to say that

target's position and vector at the instant of a specific event—the implicit state allows for

the calculation of an intercept point which will remain valid at least until the next event

of the threat in question, as long as an intercept speed is defined. If an intercept speed is

not defined, the basic motion equation, () tvxtx ∗+= 0)(, will end up with two unknowns,

velocity and time. The ability to calculate an intercept point is essential to the simulation

of the Patrol Boat movement, since interception is precisely what defines the "service"

within the dynamic service model being developed. The mathematics underlying the

intercept algorithm—code available in Appendix A—is as follows, for an intercept by

Patrol Boat, PB, of a threat, C, with initial conditions at a doStartMove event of C that is

heard by PB:

Givens:

19

PB initial position: 







Ypb
Xpb

 PB velocity: 







PBy
PBx

Threat initial position: 







Yc
Xc

 Threat velocity: 







Cy
Cx

Using the basic motion equation for both the Patrol Boat and the threat, set their

positions at time, t, equal to solve for the time at which they will be in the same place,

given a Patrol Boat intercept speed:

 (1) time
Cy
Cx

Yc
Xc

time
PBy
PBx

Ypb
Xpb

∗







+








=∗








+









 (2) time
Cy
Cx

PBy
PBx

YpbYc
XpbXc

∗















−








=








−
−

 let:
[]
[] dyYpbYc

dxXpbXc
=−
=−

 (3) 





−
=








−

=
CxPBx

dx
CyPBy

dy
time

 (4)
[]
[])()()()(CydxPBydxCxdyPBxdy

dy
dx

CyPBy
CxPBx

−=−⇒=
−
−

Now, with the unknown, time, removed, the necessary intercept velocity can be obtained

by using straightforward vector resolution. First, for simplification of terms, since the

Threat velocity and both vessels' initial positions are known, we can define a constant,

)()(CydxCxdyk −= . Also, since the Patrol Boat's velocity is in part what is being

solved for—that is, its direction or course to intercept—we must define an intercept

speed, S, the magnitude of the intercept vector, so that the Pythagorean theorem can be

invoked, leaving as a single unknown either of the intercept vector's component vectors.

Here, as in the algorithm within the simulation coding, the X-component is solved in

terms of the Y:

 (5) 222222
int PBySPBxSVPByPBx −=⇒==+

Further algebraic manipulation yields:

20

 (6) () 0)))((())((2 222222 =−+++ SdykPBykdxPBydxdy

Which can be solved using the quadratic formula , with

)))(((),)((2),(22222 Sdykckdxbdxdya −==+= , and

 (7)
)(2

))((42

a
cabb

PBy
−±−

=

At this point the Patrol Boat's vector for intercept is fully determinable, but for Simkit

purposes, the key value is that of time to intercept, which is obtained using (3). The time

to intercept is used in the basic motion equation (() tvxtx ∗+= 0)() for the Threat to

solve for the intercept point—that point at which, at time = time in the future, the Threat's

position will equal that of the Patrol Boat. Actually solving for the Patrol Boat's vector

is unnecessary within the simulation program, since an order to move to the intercept

point will necessarily result in that vector's generation—in fact, Simkit will provide the

vector if desired, through a method invoked upon the Patrol Boat object upon its

execution of the event that moves it to intercept.

 It should be noted, at this point, that certain conditions make an intercept

infeasible. There are three types of intercept infeasibility that are apparent in the

development above. The first is infeasibility because there simply is no point at which a

Patrol Boat and target's motion equations will be equal. This is indicated by an

imaginary root—a negative result under the radical of (7). The second infeasibility

results when a calculated intercept point, while it exists, is outside the defined problem

space—e.g. an intercept point that is actually on land. The third infeasibility is the case

where time to intercept, from (3), is negative, indicating that the intercept point as already

been passed.

Infeasibilities notwithstanding, once the intercept point of an incoming threat has

been determined, the pieces of the dynamic service model are assembled. Incoming

contacts that are evaluated as threats are the customers, the Patrol Boats are the servers,

and the intercept maneuvers derived from the calculation above are the services. Unlike

21

typical service models, customers do not stand still if they join the queue, and service

times are not simply the realization of a random variable, but are rather a function of the

distance separating the server from the customer at the start service. Because of possible

speed mismatches, there is also the possibility of service infeasibility—i.e. the inability

for a Patrol Boat to intercept at its intercept speed, given a high Threat speed—which

doesn't exist in the standard service model.

The foregoing has presented the tools and modes of presentation of discrete event

simulation of a service model with movement. The following chapter applies the

principles herein discussed to the waterfront Force Protection problem and outlines the

development of the model generated to simulate it, using Event Graphs. It also addresses

the issues of verification and validation and the use of graphics, in preparation for model

runs and analysis.

22

THIS PAGE INTENTIONALLY LEFT BLANK

23

 III. MODEL DEVELOPMENT

A. MODEL COMPONENTS

The components of the Force Protection simulation are, in true object-oriented

fashion, made up of entities that represent the basic "artifacts" of the waterfront at

SubBase Bangor—or, really, any port—and the command structures that direct them.

The main objects of the simulation are boats, both Patrol Boats and other boats on the

river. These objects are extensions of Simkit's BasicMover class, and are called

TypedBasicMovers, to allow for differentiating, for example, patrol craft from threat craft

within the code. The components of the simulation program are the classes that generate,

command and move the TypedBasicMovers. Certain components need to know what

certain other components are doing, so they are set up as SimEventListeners to their

"subordinate" classes. The figure below is a black-box depiction of the simulation's

major components and their interactions, with SimEventListeners connected by the bold

arrows. This bird's-eye view shows the essential structure of the entire simulation model;

the event graphs that follow actually reside, conceptually, within the component blocks.

Figure 5. Major Simulation Components and Listening Pattern

Arrival

Process

Contact Generation

• Loiterers

• Passersby

TerroristMoverManager

•Smart Bad Guys

•Dumb Bad Guys

PBMM

•Patrol Boats

Random Location
Mover Manager

Path Mover
Manager

PBController

Arrival

Process

Contact Generation

• Loiterers

• Passersby

TerroristMoverManager

•Smart Bad Guys

•Dumb Bad Guys

PBMM

•Patrol Boats

Random Location
Mover Manager

Path Mover
Manager

PBController

24

The arrowheads show the direction of flow of information in the

SimEventListening pattern of the simulation. For example, the Contact Generators listen

to the Arrival process and the PBController listens to individual contacts, and to all Patrol

Boat Mover Manager (PBMM) components. The component-based design of the

simulation above is enough to describe the general processes of the model. Arrival

Processes provide inter-arrival times at which different kinds of contacts are generated

within a contact generation component. Each contact is assigned to a movement-

managing component, dependent upon its type, and is made known to the PBController

through the PBController's being made a SimEventListener to the contact—the reality

simulated here is that the Arrival Process signifies a contact's arrival into the field of view

of the controlling station. Patrol Boat objects are instantiated and assigned to PBMM's

and are, as well, put under the supervision of the PBController. Finally, each simulation

has a TerroristMoverManager component that carries out a specific kind of attack upon

the Delta pier. The terrorist objects are movers like the others and are, therefore, also

assigned mover managers and registered with the PBController, though the PBController

is not told they are any different from any other contact on the river. The listening

pattern allows mover manager components to hear movement events so as to schedule

follow-on movement events while simultaneously allowing the PBController to hear

those same movement events so as to respond to them.

1. Mover Managers

There are four kinds of Mover Managers implemented within the simulation: a

RandomLocationMoverManager for Randomly maneuvering TypedBasicMovers—called

Loiterers—a basic PathMoverManager transiting or "Passerby" TypedBasicMovers, a

TerroristMoverManager for "Bad Guy" TypedBasicMovers, and a PatrolBoatMover

Manager (PBMM) for Patrol Boat TypedBasicMovers. The basic mover manager

components of the simulation are very straightforward but worth showing, since they

demonstrate the way in which the dynamic service model is set and maintained in

motion. The basic idea of all types of mover managers is that they move their constituent

objects from one point to another. The differences among the different types of

Managers result from differences in the behaviors of the various TypedBasicMovers. For

25

example, the difference between random movement and path movement is simply that a

RandomLocationMoverManager generates a new random location as the next destination

point for its Mover upon its arrival at a location (which results in endless movement,

unless interrupted), whereas all other Mover Managers move their constituent Movers

through a sequence of pre-set waypoints. In either case, the Mover—or within the

context of this simulation, the TypedBasicMover—is started and then redirected upon

every execution of its doEndMove method.

Figure 6. PathMoverManager Event Graph (major elements)

A few additional Event Graph conventions in this and the following applications

need to be explained. The labeling techniques used in the above Event Graph (Figure 6)

will be used in all the graphs that follow. The items within the parentheses appended to

the class names on the top of the event graphs, are objects that are "handed" to the

component upon its instantiation, through its constructor. Once the component has the

objects, it can directly invoke methods or perform operations upon them. The names are

included in the event graphs to show how direct invocations upon an object can be made

within the depicted classes. For example, the fact that the PathMoverManager is handed

a reference to the Mover it will control ("m") and that Mover's list of waypoints ("v")

allows the PathMoverManager to invoke the Mover's moveTo method directly

(m.moveTo), and to iterate through its Mover's waypoints. Conditions on arcs are labeled

PathMoverManager(Mover m, Vector v)

Start

doEndMove

(m)

m.moveTo

(nextWayPt)

Stop

doStartMove

(m)

(A)*

0.0

t = dist/spd

(A)

* Condition A: if “m” has another way
point in “v,” its waypoints vector

Iterate through v
to find way points

Iterate through v
to find way points

[m]

PathMoverManager(Mover m, Vector v)

StartStart

doEndMove

(m)

doEndMove

(m)

m.moveTo

(nextWayPt)

StopStop

doStartMove

(m)

(A)*(A)*

0.0

t = dist/spd

(A)

* Condition A: if “m” has another way
point in “v,” its waypoints vector

Iterate through v
to find way points
Iterate through v
to find way points

Iterate through v
to find way points
Iterate through v
to find way points

[m]

26

and then explained below each graph to save space. As usual, changes in state are

indicated in curly braces below applicable methods. Herein, important processes that are

executed within a method will also be indicated within those curly braces. The brackets

below certain scheduling edges indicate a parameter that is being passed from a

scheduling method to the method being scheduled—this corresponds either to a direct

method invocation that requires the parameter or to the object instantiated within the

waitDelay construct discussed above. Perhaps most importantly, it must be understood

that the event graphs shown here are not comprehensive in that they do not show every

single method or capture every action or every change of a state variable within the

classes or components they represent. The graphs are designed (as always) to capture the

main flow of events in the DES while limiting the complexity of their presentation.

 As for the details of the PathMoverManager event graph, the most important thing

to note is that the key event in the class is the doEndMove event, because it is here that,

once the manager has been started, it takes all follow-on actions. This same idea is

elaborated in the PBMM. The graph also visualizes the SimEventListening pattern, in

that the doEndMove method of the PathMoverManager is executed upon its "hearing" the

same event executed by its Mover. Once the PathMoverManager has been added as

SimEventListener to its Mover—which actually happens in another class, as will be

seen—it will hear and therefore be able to react to any of its Mover's events within its

own event of the same name. Specifically, then, after the PathMoverManager has been

started, through an invocation of its start command (shown as a method for ease in

following the flow of events), it checks to see if its Mover has any waypoints and, if so, it

directs the Mover to its first waypoint. The m.moveTo(some point) command results in

an immediate doStartMove for the mover and a scheduled doEndMove for the same

mover with a time delay equal to the time it will take for the Mover to move from where

it is to its first waypoint, based upon the simple motion equation. The

PathMoverManager does not, in fact, have a doStartMove method within it; it merely

effects movement through the moveTo command. The method has been included within

the event graph to make the movement process more apparent. When the Mover

executes its doEndMove method, upon arrival at a waypoint, that event is heard by the

PathMoverManager, which then iterates through the waypoint vector again and issues

27

another moveTo event, if there are more waypoints in the vector. Note that if there are no

more waypoints, the PathMoverManager simply does nothing, hence the Mover will

remain at rest. The stop command (again shown as a method), therefore, is merely

included to allow a direct intervention in the pre-set movement of a Mover.

2. Contact Generators

There are two kinds of contact generators in the model, each corresponding to a

specific kind of TypedBasicMover. One is a LoitererGenerator, which generates

TypedBasicMovers of the PlatformType "Loiterer," and the other is a PasserbyGenerator,

which generates TypedBasicMovers of the PlatformType "Passerby." Either type of

contact is generated at a random "Y" position—the Y-axis being the East-West axis or

"across" the river from the pier—on either end (north-south axis) of the river zone, and

given a uniform random speed between zero and thirty-five knots. The only difference in

the generators is the kind of Mover Manager to which it assigns its respective

TypedBasicMover. A Loiterer is a randomly moving contact, meant to represent a

fishing boat, or a recreational craft moving around in the vicinity of the pier.

Consequently Loiterers are assigned to a RandomLocationMoverManager that simply

moves its Loiterer randomly from point to point within the river bounds. Loiterers will

often cross into the exclusion zone and be evaluated as threats that need to be intercepted.

They are distractions for the Patrol Boats, but since there is no way of knowing which

contacts might be Terrorists, Loiterers must be taken seriously. This is an important

feature of the model, because the primary goal of the simulation is to come up with some

way of effectively preventing a terrorist attack without knowing for sure whether or not

any given boat may contain a terrorist. A Passerby is a contact that moves in a straight

line from one edge of the river boundary to the other, passing by the sub-base. A

Passerby is a transiting craft that is generally not going to drive inside the exclusion zone

in the river and consequently will rarely be evaluated as a threat, but its randomly

assigned Y-position is allowed to fall inside the exclusion zone by up to fifty yards, so

one may well end up being intercepted as a threat upon occasion. Since the contact

generators are very similar, only the LoitererGenerator event graph is provided:

28

Figure 7. LoitererGenerator Event Graph (major elements)

An element shown for the first time in this event graph (Figure 7) is the River

object, which is part of what allows the Patrol Boat simulation to be displayed

graphically. The simulation's "river" is passed into the Lo itererGenerator and other boat

components of the simulation so their movement may be seen as the simulation runs.

The graphical display of the simulation will be discussed below, and has nothing to do

with the way the simulation, per se, works. Since LoitererGenerator is a

SimEventListener to an ArrivalProcess—not shown in itself, but the same as shown in

Chapter Two—it has its own doArrival method, which is executed upon an Arrival event.

Hence "generation," which is merely instantiation of an object of a specific type, takes

place upon an Arrival. Upon instantiation within the doArrival method, the new Loiterer

object is assigned a mover manager, made known to the PBController, and started upon

its randomly moving way. The doEndMove method is heard from the instantiated

Loiterer object, since the LoitererGenerator is a SimEventListener to its Loiterer—the

Generator is the "this" of "l.addSimEventListener(this)." Upon a Loiterer's execution of

LoitererGenerator(PBController pbc, River r)

Arrival

Random speed, Random pos

l = new Loiterer

l.addSimEventListener(this)

r.add(l)

l.addSimEventListener(pbc)

Assign to Random Loc MM

Start

doEndMove

(l)

If l has been
intercepted:
remove from
lists

doDisappear

(l)

r.remove(l)

LoitererGenerator(PBController pbc, River r)

Arrival

Random speed, Random pos

l = new Loiterer

l.addSimEventListener(this)

r.add(l)

l.addSimEventListener(pbc)

Assign to Random Loc MM

Start

doEndMove

(l)

If l has been
intercepted:
remove from
lists

doDisappear

(l)

r.remove(l)

29

an EndMove after it has been intercepted—a condition known through a Boolean method

invoked upon a TypedBasicMover—the LoitererGenerator essentially removes all

records of it, except its graphical depiction. The graphical depiction of the Loiterer is not

removed from the simulation's display panel until its doDisappear method is invoked a

short time after its interception.

3. TerroristMoverManager

The TerroristMoverManager component is an extension of the

PathMoverManager class, specifically tailored to control terrorist or "Bad Guy"

movement. It is described separately to show more clearly how the main event of the

simulation—the terrorist attack—is effected. It is the component that executes terrorist

attacks, by moving "Bad Guy" objects toward the High Value Unit (HVU). It is passed a

TypedBasicMover of PlatformType either "Smart Bad Guy" or "Dumb Bad Guy," with

its waypoints and a time until attack. A Smart Bad Guy has two waypoints in its

waypoint vector: the first with the same Y-position as its initial starting point and an X-

position that is the same as the X-position of the HVU, and the second set equal to the

position of the HVU. Hence, a "Smart Bad Guy" transits parallel to the exclusion barrier

at a low speed (like a Passerby) until directly opposite the pier, and then turns ninety

degrees toward the pier and accelerates to maximum target speed. A Dumb Bad Guy is

more direct. It is started at either end of the river, and simply drives straight toward its

single waypoint, which is the location of the HVU. Both kinds of Bad Guy have the

High Value Unit's location as an ultimate destination, which differentiates their

movement from other TypedBasicMovers.

30

Figure 8. TerroristMoverManager Event Graph (major elements)

The TerroristMoverManager (Figure 8) component or class is very similar to the other

Mover Managers, except that its movement is not activated directly by a "start"

command, but rather by a doAttack method scheduled with a waitDelay method within

the class upon the execution of the doRun method at the simulation's start. Additionally,

the TerroristMoverManager class, fires a doBoom event, indicating a terrorist has

achieved its goal of getting to the HVU, if upon a doEndMove event it has no more

waypoints and is still "active"—an active threat is one which has not been intercepted.

The doBoom event is the source of the "terror" statistic defined in chapter Four.

4. PBMM

The PBMM—short for Patrol Boat Mover Manager—class does precisely what it

says: it manages the movement of TypedBasicMovers of PlatformType "Patrol Boat." In

reality terms, a PBMM can be thought of as the captain or operator of a Patrol Boat. In

Simkit terms, it is an elaboration of the basic PathMoverManager that controls the

movement of Passersby and Bad Guys of either kind. The PBMM includes methods

TerroristMoverManager(Mover m, Vector v, double attackTime)

Stop
Conditions: A: if “m” has another way point in “v,” its waypoints vector

B: if “m” has no more way points and is still active

doRun

(A)*

Iterate through v
to find way points

doEndMove

(m)

m.moveTo

(nextWayPt)

doStartMove

(m)

0.0

t = dist/spd

(A)

Iterate through v
to find way points

[m]

attackTime

doStartAttack

doBoom

(B)

0.0

TerroristMoverManager(Mover m, Vector v, double attackTime)

StopStop
Conditions: A: if “m” has another way point in “v,” its waypoints vector

B: if “m” has no more way points and is still active

doRundoRun

(A)*(A)*

Iterate through v
to find way points
Iterate through v
to find way points

doEndMove

(m)

m.moveTo

(nextWayPt)

doStartMove

(m)

0.0

t = dist/spd

(A)

Iterate through v
to find way points

doEndMove

(m)

doEndMove

(m)

m.moveTo

(nextWayPt)

doStartMove

(m)

0.0

t = dist/spd

(A)

Iterate through v
to find way points
Iterate through v
to find way points

[m]

attackTime

doStartAttackdoStartAttack

doBoomdoBoom

(B)(B)

0.0

31

specific to a Patrol Boat object, most importantly an "Intercept" method—which is not a

"do" method, because it need not be heard. The PBMM's normal mode is the patrolling

mode: it moves a Patrol Boat through the waypoints of its set patrol pattern until it

reaches the end, and then starts it over again, ad infinitum. It "knows" that its Patrol Boat

is in patrolling mode as long as it has not been assigned a target, which it checks upon the

execution of each of its Patrol Boat's doEndMove methods. If the Patrol Boat has ended a

move without an assigned threat, the PBMM keeps moving it through its patrol pattern.

The patrol pattern is only broken when the PBMM is given directions by the

PBController to intercept a threat contact. Upon the direction to intercept, the PBMM

stops the patrolling pattern and moves its Patrol Boat TypedBasicMover to the intercept

point it has been handed by the PBController. Upon the execution of its

TypedBasicMover's doEndMove method, when the Mover is not patrolling—indicated by

its having an assigned threat object—the PBMM schedules a doEndIntercept method

with a zero time delay, which is "heard" by the PBController through the

SimEventListener pattern. At the end of an intercept move, the PBMM will either be

immediately re-assigned to intercept another threat or be released to re-commence its

patrol cycle.

32

Figure 9. PBMM Event Graph (major elements)

As with the PathMoverManager, the doEndMove is the critical event of the

PBMM, since that is where is does most of its evaluation and scheduling. When a Patrol

Boat is patrolling, its movement is indistinguishable from that of other Movers, except

that it will re-start at the end of its waypoints as opposed to other Movers that just stop.

This restart is accomplished through additional condition labeled "B" in the graph (Figure

9). What is very different about a PBMM relative to a PathMoverManager is that its

normal movement cycle can be interrupted by the PBController through its invocation of

the PBMM's "Intercept" method as shown. The Intercept method receives the target to be

PBMM(TypedBasicMover m, Vector v)

Stop

•Conditions:

A: if “m” patrolling and has another way point in “v,” its waypoints vector

B: if m patrolling but has no more waypoints in its patrol pattern or m has finished an intercept and there are no other immediate threats

C: if m patrolling but needs to intercept—this cancellation is executed automatically through a “stop” command given by the PBController

D: if not patrolling (i.e. completing an intercept)

E: if not patrolling (i.e. completing an intercept) and ordered to intercept another target immediately

0.0

StartPatrolling
(A)*

Iterate through v
to find way points

doEndMove

(m)

m.moveTo

(nextWayPt)

doStartMove

(m)

t = dist/spd

(A)(B)

Intercept

(intPt, tgt)

(C)

(E)
doEndIntercept

(tgt)

(D)

0.0

[tgt]

0.0

t = dist/spd

0.0

0.0

0.0

0.0

PBMM(TypedBasicMover m, Vector v)

StopStop

•Conditions:

A: if “m” patrolling and has another way point in “v,” its waypoints vector

B: if m patrolling but has no more waypoints in its patrol pattern or m has finished an intercept and there are no other immediate threats

C: if m patrolling but needs to intercept—this cancellation is executed automatically through a “stop” command given by the PBController

D: if not patrolling (i.e. completing an intercept)

E: if not patrolling (i.e. completing an intercept) and ordered to intercept another target immediately

0.0

StartPatrolling
(A)*

Iterate through v
to find way points

doEndMove

(m)

m.moveTo

(nextWayPt)

doStartMove

(m)

t = dist/spd

(A)(B)

StartPatrolling
(A)*(A)*(A)*

Iterate through v
to find way points
Iterate through v
to find way points

doEndMove

(m)

doEndMove

(m)

m.moveTo

(nextWayPt)

doStartMove

(m)

t = dist/spd

(A)(B)

Intercept

(intPt, tgt)

Intercept

(intPt, tgt)

(C)

(E)
doEndIntercept

(tgt)

(D)

0.0

[tgt]

0.0

t = dist/spd

0.0

0.0

0.0

0.0

33

intercepted and its location—this is the boat's operator being vectored to a specific target

by the contact/strike coordinator. It uses the intercept point location to invoke the

moveTo method on its Patrol Boat object and retains (through a setting method) the

target reference so it can schedule a doEndIntercept upon that specific target, once the

intercept move is complete and assuming nothing changes after the first command to

intercept. The cancellation—represented by the dotted line—from the Intercept method

to the doEndMove is not explicitly executed in the PBMM, but is included to show that

an invocation of the PBMM's Intercept method automatically stops the PBMM's Patrol

Boat thereby canceling its previously scheduled EndMove, to allow redirection before

completion of a planned maneuver. If a PBMM's Patrol Boat gets to an EndMove event

with a reference to a target still active, the PBMM, upon hearing the event, will schedule

a doEndIntercept event with a zero time delay, passing along a reference to the target

which has been intercepted to the PBController through the SimEventListening pattern.

Movement after an EndMove event constituting an intercept is actually controlled via the

PBController—which decides whether or not it still needs the PBMM for intercepting—

but the possible movements after such an EndMove and the logic that effects them are

depicted in the PBMM event graph for sake of convenience and clarity.

5. PBController

The PBController is the coordinating component of the simulation. It is the class

that monitors both contacts and Patrol Boats and directs Patrol Boats based upon its

evaluation of contacts within the river. In reality terms, the PBController is like a

combined contact and strike coordinator. It tracks contacts and maintains what amounts

to a status board of all activities on the river: lists of all contacts, all threats, all available

Patrol Boats, and all intercept assignments. It also determines whether or not a contact

needs to be intercepted, which Patrol Boat will intercept it, and where that Patrol Boat

needs to go to intercept—the algorithm for the intercept problem developed above resides

within this class. Because the PBController listens to all other components within the

simulation and directs all interaction between Patrol Boats and contacts it is the

component within which almost all of the simulation's statistics are gathered.

34

Figure 10. PBController Event Graph (major elements)

The PBController (Figure 10) is handed the list of its PBMM's for a given

simulation scenario. It is also a SimEventListener to its PBMM's and to every other

contact that is generated within the simulation, as has been shown. This means that the

PBController can hear any SimEvent fired by any boat object in the simulation within its

own methods of the same names. The event that most matters is the doStartMove event

of any non-Patrol Boat, because upon the execution of a StartMove event, a contact's

movement information for its next leg of motion is available, through its various

methods, to any object holding a reference to it. This is how the PBController evaluates a

contact to see if it is a threat. If a contact is a threat, which means it is currently, or will

at some point be, inside the exclusion zone of the river, then the PBController schedules a

PBController(LinkedList allPBMMs)

doStartMove
(m)

doThreat
(m)

PBMM.

startPatrolling

PBMM.intercept
(m, intPt)

doNonIntercept
(m)

doEndIntercept
(m)

m.kill

(m)

Conditions:

A: if m != a Patrol Boat B: if m inside Exclusion zone C: if m will enter Excl Zn at time “t” in future

D: if no intercept possible E: if m not being int & int Pt & PB>0 F: if m being int but has man and still threat

G: if threat Q size > 0 H: if threat Q size = 0

(A)

(H)

(A&B)

(A&C)

(G)

(F)

(E)

(D) (H)

(G)

t
[m]

[m]

[m
]

[m]

[m, intPt]
[m

]

[m
]

0.0

0.0

0.0

0.0

0.0

0.0
0.0

0.
0

0.0

0.0

[m
, intPt]

Q- or Q+

PB- or not

leakers+, m=closest theat

PBMM = closest avail PB

intRange,PB+

#ints +

{PB+}
doDisappear

(m)

[m]
tD

PBController(LinkedList allPBMMs)

doStartMove
(m)

doThreat
(m)

PBMM.

startPatrolling

PBMM.intercept
(m, intPt)

doNonIntercept
(m)

doEndIntercept
(m)

doEndIntercept
(m)

m.kill

(m)

m.kill

(m)

Conditions:

A: if m != a Patrol Boat B: if m inside Exclusion zone C: if m will enter Excl Zn at time “t” in future

D: if no intercept possible E: if m not being int & int Pt & PB>0 F: if m being int but has man and still threat

G: if threat Q size > 0 H: if threat Q size = 0

(A)

(H)

(A&B)

(A&C)

(G)

(F)

(E)

(D) (H)

(G)

t
[m]

[m]

[m
]

[m]

[m, intPt]
[m

]

[m
]

0.0

0.0

0.0

0.0

0.0

0.0
0.0

0.
0

0.0

0.0

[m
, intPt]

Q- or Q+

PB- or not

leakers+, m=closest theat

PBMM = closest avail PB

intRange,PB+

#ints +

{PB+}
doDisappear

(m)

[m]
tD

35

doThreat event. It is scheduled immediately if a contact is already inside the exclusion

zone upon its StartMove—as is the case with a contact that is instantiated inside it or one

which maneuvers inside after previously entering but before interception—or with a

waitDelay equal to the time at which the contact will cross the line, as determined by the

basic motion equation. The canceling edge means the first step taken by the

PBController, whenever any of its contacts maneuvers, is to cancel previously scheduled

Threat events for that contact. This allows for the re-evaluation of a maneuvering contact

and is ignored if no Threat events have been scheduled for the contact that has started a

move.

The doThreat method is perhaps the most important of the entire simulation. It

takes in all the motion information for a contact and applies—through another method

not shown, called getIntercept—the algorithm developed above to determine if an

intercept of an identified threat is possible at the intercept speed set for a given simulation

scenario. If not (condition D in Figure 10) it schedules—actually, again, through the

getIntercept method—a doNonIntercept method with a zero time delay. If so (conditions

E or F), it determines the available Patrol Boat closest to the threat that can intercept it

and invokes its PBMM's Intercept method. If there are no feasible available Patrol Boats,

it adds the threat to the threat queue—this is why the state variables change in different

possible ways in this method. It should be clear that a doThreat method within the

PBController that yields a feasible intercept and an Intercept method within a PBMM

will take place at the same simulation time, given there is a Patrol Boat available. What

may not be quite as obvious is that these coordinated actions represent the Start Service

event of the dynamic service model.

The doEndIntercept method of the PBController represents the End Service of the

dynamic service model, but is not directly connected as in the general case shown in

Chapter Two, because it is actually an event fired from the PBMM, and therefore only

heard, rather than executed by the PBController. The PBController, the ultimate micro-

managing middle man, only schedules and records completion of service; it doesn't

actually perform any! Nonetheless, the doEndIntercept method accomplishes the same

general tasks as an EndService: it takes statistics on service performance, and schedules

follow-on services if necessary. If a server (Patrol Boat) is "idle" it is sent back into its

36

patrolling pattern. The tone of the dynamic service model is apparent in the kill method

invoked upon any threat whose "service" is complete. The method actually resides in the

TypedBasicMover class and simply stops a TypedBasicMover dead in its tracks and

schedules a doDisappear with a pre-set waitDelay. The delay is set to allow the

graphical display to show a contact has been intercepted or killed before it disappears.

Upon an intercept, the intercepted threat turns a dark color—magenta for non-Bad Guys;

black for Bad Guys—and its image is held until the execution of the Disappear method,

at which time the object disappears from the screen. The Disappear method is highlighted

in the event graph to show it is actually a follow-on action performed outside the scope of

the PBController.

6. BreachSensor

This component of the simulation is not in the block diagram above, because,

although not in the SimEventListening pattern, it does serve an important purpose and

does incorporate the FirePropertyChange construct. BreachSensor is an extension of the

Simkit BasicSensor. It is used in this case simply to gather a statistic on the number of

contacts that get inside a "breach range" or standoff range from the pier. In other words,

it is not really being used as a sensor but rather as an indicator of a "breach" event. The

breach range is set as the range of the sensor and can be easily varied. The goal is to

provide an additional measure of Patrol Boat performance to the measure of whether or

not a terrorist has gotten all the way to a HVU. The idea is that any contact within a short

distance from a moored submarine represents a degree of failure in force protection, even

if the threat is intercepted.

37

Figure 11. BreachSensor event graph

The MyBasicSensor class (Figure 11) listens to the doDetection method of its

Referee object—an object used with Simkit sensing to coordinate targets and sensors that

are registered with it via a Mediator—and upon execut ion of the method, it fires a

PropertChange, simply incrementing the number of breaches for the run.

B. OTHER CONSIDERATIONS

1. Face Verification and Validation: Assumptions

An explanation of component design and interaction demonstrates how the

simulation model is constructed, but model results are dependent upon what assumptions

are made about model inputs, and whether or not those assumptions are reasonable and

properly implemented. Bratley, Fox and Schrage define verification as "Checking that

the simulation program operates in the way that the model implementer thinks it does:

that is, is the program free of bugs and consistent with the model"[Ref. 21; p. 8].

Verification is essentially a coding check; it ensures that the model's constituent

algorithms are doing their calculations correctly. Simkit provides an excellent tool for

verification in its "verbose" mode. When Simkit's Schedule is set to verbose, it lists the

current Event being executed in the DES, along with the Future Event List and the

names, positions and speeds of all instantiated Movers. This allows the programmer

literally to step through a simulation run and ensure Movers are behaving as they are

designed to behave. Of particular importance in the simulation is the Intercept move. The

BreachSensor

doDetection
(m)

{breaches++}

BreachSensor

doDetection
(m)

{breaches++}

38

underlying algorithm was verified both through the Event List output—that showed

proper speed changes and that the Patrol Boat and target did in fact end up at precisely

the same point—and by an independent spreadsheet implementation. The model's

graphical display was also an excellent tool for model verification. A picture tells a

thousand words, and a moving picture—in fact, a picture of Movers—exposes the

functionality of a thousand lines of code. With graphics one can easily and literally

achieve "face verification" just by checking to see if everything "looks about right."

Validation is a more elusive goal. Department of Defense Directive 5000.59,

DoD Modeling and Simulation (M&S) Management, defines validation as "the process of

determining the degree to which a model or simulation is an accurate representation of

the real-world from the perspective of the intended uses of the model or simulation"[Ref.

22]. Bratley et al. define validation as "Checking that the simulation model, correctly

implemented, is a sufficiently close approximation to reality for the intended application .

. . no recipe exists for doing this"[Ref. 21; p. 9]. Probably the best that can ever be

achieved, particularly in a data- less, exploratory model like this one, is "face validation."

Nonetheless, a few points can point toward accuracy. Firstly, the model is designed to

allow for changes in model inputs, so that it is robust to varying scenarios and therefore

can be adjusted to achieve increasing levels of validity. Key parameters can be easily

changed—and are, for analysis purposes, in the next chapter—to get a range of outcomes.

However, certain vital behavioral patterns are held constant and need to be justified by

being held up to reality. First are the ArrivalProcesses for the contact generators. The

Arrival Processes are modeled essentially as Poisson processes. As Ross points out, the

Poisson process, a counting process which has exponentially distributed interarrival

times, can be used in situations where a system starts empty and interarrival times are

independent (the assumption of "independent increments"[Ref. 23; p. 251]). The vital

and unique[Ref. 23; p. 238] attribute of the exponential distribution that makes its

application to the arrival process very reasonable is its "memory-less" property; the fact

that at any point in time, the expected time until the next arrival is the same as it had been

at time zero:

The assumption of stationary and independent increments is basically
equivalent to asserting that, at any point in time, the process

39

probabilistically restarts itself. That is, the process from any point on is
independent of all that has previously occurred . . . In other words, the
process has no memory, and hence exponential interarrival times are to be
expected.[Ref. 23; p. 256]

In the model, inter-arrival times of the two Arrival Processes are generated from

two different Gamma distributions. There are no specific data of river traffic for the area

adjacent to the Delta pier, so the model implements a more general form of the

exponential arrival rate recommended by Ross and Law and Kelton[Ref. 10; p. 300].

Both Arrival Processes in the model—for Loiterers and Passersby—use Gamma

distributions with shape parameters equal to one, which are exponential distributions, but

could be adjusted easily if future data indicated a more appropriate distribution shape

within the Gamma family. The model is meant to stress the capacity of Patrol Boats to

respond to threats in very high traffic density (a conservative approach) so inter-arrival

rates are relatively high particularly for Loiterers. The mean arrival rate for Loiterers is

0.125 (eight arrivals per hour), and that for Passersby is 0.5 (two arrivals per hour).

These values are set to give "conservative" estimates of Patrol Boat performance, and are

held steady while the parameter space of Patrol Boat configurations is explored.

A second key characteristic of the model is how a contact is evaluated as a threat.

As it stands, a threat—which is to say, a contact that will be intercepted if possible—is

defined as any contact that crosses into the exclusion zone, which is established, in

reality, by the Coast Guard and marked with yellow buoys. According the algorithm, a

Patrol Boat will never move to intercept a contact until it crosses the line, and when it

does move to intercept it will always move at the same speed, regardless of contact

characteristics. The criterion for responding only with a violation of the exclusion zone

was established based upon discussion with the CSG-9 security officer, and the uniform

intercept speed was established based upon the fact that all threats must be treated as real

threats.

Another implicit assumption of the model is that the PBController has perfect

information about certain characteristics of every contact on the river. While it cannot

know a contact's type—since that would be cheating—it does know everything about its

location and movement. It "sees" and can direct an intercept of all contacts immediately

40

upon their entering the two-mile by one-mile rectangle that represents the operational

zone around the pier. This assumption is supported by the fact that, in reality, from the

control tower on Delta pier there is a full view well beyond the zone depicted in the

simulation, and the entire operational area can be surveyed continuously. In other words,

this is a line of sight situation, where it is reasonable to leave out delays in detection time.

Certainly, there is a case to be made for the low visib ility, bad weather situation, but that

is not taken into account in the model. The capacity to generate an intercept point

immediately is actually more accurate than it may at first appear, since a maneuvering

Patrol Boat, with line of sight, is capable of simply driving at a contact, making whatever

course adjustments are necessary to achieve an intercept. Were there truly the necessity

for a maneuvering board type calculation to be done before an intercept course could be

determined, the instantaneous solution would be unreasonable, but in this line of sight

case, the movement is reasonable.

2. Graphics

The use of graphics in presenting the Force Protection simulation has already

been mentioned in the description of component event graphs and in its value for model

verification. Two more points need to be mentioned. First, the basic mechanics of the

graphics, and second the value of graphics in the use of the simulation.

There is one class within the simulation package, Patroller, that implements Java

Swing. That class is called the River, as mentioned above. Within River, directions are

given for drawing anything that should be visible on the river, and methods are included

for adding TypedBasicMovers to the river. In particular, the coordinate axes, the delta

pier, the exclusion zone barrier and the breach range are permanently displayed on the

panel (Figure 12). TypedBasicMover objects are displayed after they have been added to

the panel until they have been removed.

41

Figure 12. Graphical Display of Simulation with Notation Added

The River panel is drawn or "painted" through the addition of another "loosely

couple component," the Animation class developed by Buss. Simulation animation can

be turned on or off dependent upon what the model is being used for. For production

analytical runs, the graphics are best turned off to allow rapid replication. For run-by-run

intuitive analysis, the graphics are extremely valuable. Even before statistics are

gathered, visual observation of a given Patrol Boat configuration against a specific attack

“Delta” pier

Breach Range

Exclusion Zone Boundary

Loiterers

Patrol Boats

Smart Bad Guy on
first leg of attack Dumb Bad Guy being

intercepted

Simulation Time

“Delta” pier

Breach Range

Exclusion Zone Boundary

Loiterers

Patrol Boats

Smart Bad Guy on
first leg of attack Dumb Bad Guy being

intercepted

Simulation Time

42

can give broad insights into the relative worth of different tactics. Beyond that, it is re-

assuring for analyst and decision-maker alike to have a way of "seeing" simulation

analysis results other than some output file filled with numbers.

43

IV. MODEL RUNS AND ANALYSIS

A. EXPERIMENTAL DESIGN

1. Fundamentals: Repeatability and Replication

Before statistics are defined or gathered, two critical design elements, specific to

simulation, must be established: replicability and repeatability. An experiment is

replicable if a number of observations can be taken under a given set of conditions. It is

repeatable if the conditions under which the data are collected can be reproduced. This

Force Protection simulation experiment is replicable at two levels: within each design

point, and across all design points of the experiment. Each design point of the

experiment runs a specific Patrol Boat configuration against the same range of terrorist

attacks. Each design point is run against each type of attack 500 times. Each of the 500

individual model runs is a replication of the simulation within a design point. This is the

first level of replicability within the experiment. In order to make a true comparison

among Patrol Boat configurations alternatives, the experiment must be repeatable. That

means each configuration or design point must be faced with the very same situations as

all other design points. For example, the 40th replication of design point eight against

attack number three must present the same threat profile—the same number of threats in

the same places at the same times—as the 40th replication of design points one through

seven against attack number three. This is repeatability. After the experiment is repeated

at each design point against all attacks, the results for a given attack across all design

points is a single replication of the experiment. This is the second level of replicability

within the experiment. A diagram may help to show what is meant by replication and

repeatability in the context of the kind of experimental design employed to analyze the

patrol boat problem.

44

Table 1. Representation of Repeatability and Replication within an Experiment

Law and Kelton say that, in general, replicability is achieved when:

Each run uses separate sets of different random numbers.

Each run uses the same initial conditions.

Each run resets the statistical counters.[Ref. 10; p. 212]

The assurance of separate sets of random numbers for each model run within a

configuration run is achieved as described below, using random number generation

capacities within Simkit. The second two criteria for replicability are met through "reset"

methods within all classes that contain state variables and all statistics gathering classes.

n...321Patrol
pattern

Intercept
speed

Patrol
speed

#
Boats

#######22554Setup eight
(Design point 8)

#######12552Setup seven
(Design point 7)

#######12524Setup six
(Design point 6)

#######22522Setup five
(Design point 5)

#######11554Setup four
(Design point 4)

#######21552Setup three
(Design point 3)

#######21524Setup two
(Design point 2)

#######11522Setup one
(Design point 1)

n...321Patrol
pattern

Intercept
speed

Patrol
speed

#
Boats

#######22554Setup eight
(Design point 8)

#######12552Setup seven
(Design point 7)

#######12524Setup six
(Design point 6)

#######22522Setup five
(Design point 5)

#######11554Setup four
(Design point 4)

#######21552Setup three
(Design point 3)

#######21524Setup two
(Design point 2)

#######11522Setup one
(Design point 1)

Patrol Boat Parameters (inputs) Outputs for model run number

Entire column represents one
replication of the experiment

Each number is the result of a single
model run—one “replication” within
one design point

Every output number within each column is a response to the same traffic conditions (Repeatability). “#” represents statistical output,
which means more than one number. In fact, seven statistics are gathered for each model run.

45

Simkit has a Schedule.reset() method which, when invoked, calls all other reset methods

within the simulation thereby re-establishing initial conditions. The simulation program

itself contains a "Resetter" method that resets all statistical counters. Replication is

particularly important in this simulation because it is a "terminating simulation," which

means it ends upon a specific event, rather than running long enough to reach some sort

of steady-state condition. [Ref. 10; p. 502] In particular, each simulation run terminates

at a set time, after a terrorist attack has been attempted—successfully or not. In a

terminating simulation, the only way to arrive at good statistics (statistics with reasonable

confidence intervals) is to take many observations, which is to perform many model runs.

 The assurance of repeatability from configuration run to configuration run is

achieved, in simulation, through the proper use of random numbers:

The basic idea is that we should compare the alternative configurations
"under similar experimental conditions" so that we can be more confident
than any observed differences in performance are due to differences in the
system configuration rather than to fluctuations of the "experimental
conditions." In simulation, these "experimental conditions" are the
generated random variates that are used to drive the models through
simulated time. In queueing simulations, for instance, these would include
interarrival times and service requirements of customers. [Ref. 10; p. 583]

The Patrol Boat simulation is a queueing system with randomly generated

interarrival times, initial positions and initial speeds for Loiterers and Passersby. The

goal is to ensure that each Patrol Boat patrolling configuration is tested under the very

same traffic conditions. That goal is achieved through the use of Simkit's

RandomVariate class that allows for specified seeded random number generation. Every

configuration run, which consists of many model runs or "observations" at a specific

input setup or design point, iterates through the very same sequence of interarrival times

and random location and speed assignments for all Loiterer and Passerby objects. (In

Table 2 below, we specify 500 model runs per configuration run.) Any differences in

statistical output for a given kind of attack scenario, are the direct result of changes made

to the Patrol Boat configuration. This allows for meaningful analysis.

46

2. Statistics

The specific goal of this Force Protection experiment—that has simulation results

as its data—is to find Patrol Boat tactics that are most effective against a range of

possible terrorist attacks under similar (actually identical) traffic conditions. Therefore,

the experiment must first collect statistics that indicate Patrol Boat effectiveness. Each

experimental design point pits a specific Patrol Boat configuration against a specific

attack configuration and collects the following statistics: the number of threats

intercepted, the average range of a threat from the HVU at intercept, the average number

of available PatrolBoats (read servers), the number of threats that could not be intercepted

because of infeasibilities, the number of "terrors" or successful terrorist attacks on the

HVU, the number of threats inside the "breach range" from the HVU, and the average

number of threats in the threat queue. All statistics are gathered by SimpleStats—the

statistics gathering object in Simkit—instances that record FirePropertyChanges fired

through the course of a simulation run.

a. Number Intercepted

The number of threats intercepted in a simulation run is a simple count (a

"Tally" statistic) of how many threat contacts were intercepted. Because of the

repeatability achieved through the RandomVariate random number generation, this

provides a baseline measure of relative performance from one Patrol Boat configuration

to another.

b. Range at Intercept

The average range of threats upon their interception refines the measure of

relative performance by providing a more qualitative measure. All else being equal, a

Patrol Boat configuration that intercepts at a greater range from the HVU is preferable.

c. Number of Available Patrol Boats

The number of available Patrol Boats is a time-varying statistic that

measures Patrol Boat utilization, defined in the dynamic service model as the proportion

of time a given configuration's Patrol Boats are actually moving to intercept threats. This

statistic speaks to efficiency, giving the capacity to get a sense of the point of diminishing

returns in the number of Patrol Boats necessary adequately to defend the Delta Pier

(under the attack assumptions of the model).

47

d. Number of Leakers

The number of leakers is a tally statistic that records the number of threats

that cannot be intercepted. The three kinds of intercept infeasibility mentioned with the

derivation of intercept formulae in Chapter Two are tracked individually, but only the

total number is recorded. Additionally, it is recognized that certain high speed randomly

moving contacts will be "leakers" more than once in a model run, so a given leaker is

only counted once. That is, the "leaker" statistic is actually a "unique leaker" statistic.

e. Number of Terrors

As the number of threats intercepted is the coarse estimate of how well a

given Patrol Boat configuration does against a given attack, the number of "terrors" is the

coarse estimate of how poorly it does—or, conversely, how well a terrorist attack

configuration does. For each simulation run, the number of terrors will be less than or

equal to the total number of terrorists in that run's attack.

f. Number of Breaches

The number of breaches is very similar to the number of leakers. It is a

statistic that tallies the number of threats that make it inside the stand-off range from the

HVU. It refines the "terrors" statistic by capturing the qualitative effectiveness of a

Patrol Boat configuration in actually preventing a terrorist attack. As mentioned above, it

may be a bit naïve to claim victory in the case where a terrorist object is successfully

intercepted, but only a few yards from the HVU, at which range it may well have been

able to achieve its goal. In any case, it is desirable that a Patrol Boat configuration hold

as many contacts as possible outside the established stand-off range.

g. Average Number in Queue

The average number of threats in the threat queue—"in line" to be

intercepted—is a time-varying statistic that gives a sense of the adequacy of Patrol Boat

capabilities. A higher average number in the threat queue indicates an inability of Patrol

Boats to respond to all threats, suggesting vulnerability.

3. Run Setup: Fractional Factorial Design

This thesis does not analyze every possible combination of Patrol Boat parameters

for every conceivable terrorist attack scenario, but it does provide an analysis of defense

against some feasible attacks while varying specific Patrol Boat parameters of interest to

48

the CSG-9 security officer. It is hoped that the reader will gain insights and, more

importantly, see a demonstration of a basic methodology that could be used and/or

expanded for future model analyses.

Once output statistics have been defined, it is time to specify the simulation's

experimental design. The simulation runs are set up so that enough observations can be

gathered to provided good estimates, while at the same time providing insights into the

effects of changing a number of Patrol Boat input factors. Factorial design provides an

excellent vehicle for the kind of exploratory analysis that this model is meant to achieve.

Specifically, two- level factorial designs allow for the analysis of two levels of a number

of input factors simultaneously. Though this design approach does not allow all possible

levels of all possible factors to be analyzed, it does provide a very powerful means of

identifying the factors whose "main effects"—independent contributions—dominate

outputs. As Box, Hunter and Hunter point out, these kinds of designs are exceptionally

efficient and very practical:

They require relatively few runs per factor studied; and though they are
unable to explore fully a wide region in the factor space, they can indicate
major trends and so determine a promising direction for further
experimentation.[Ref. 24; p. 306]

Because so many parameters can be varied in the Force Protection model, a two-

level factorial design is the ideal vehicle for showing its utility in providing insights into

specific scenarios. In particular a two-level fractional factorial design will be used to

allow for analysis of four different Patrol Boat factors with just eight design points. As

two-level factorial design limits the size of the factor space that can be explored,

fractional factorial design limits the number of higher order interactions that can be

explored. This means that the design assumes a factor's effect in acting by itself—its

main effect—dominates its effect when acting together with one or more other factors.

This assumption can be justified by the fact that as the number of variables or factors (k)

introduced to a model increases:

at some point higher order interactions tend to become negligible and can
properly be disregarded . . . there tends to be redundancy in a 2k design if k
is not small—redundancy in terms of excess number of interactions that
can be estimated and sometimes in an excess of number of variables that

49

are studied. Fractional factorial designs exploit this redundancy. [Ref. 24;
p. 374-75]

The practical justification for using a fractional factorial design in this analysis is

that the analysis is exploratory and more concerned with trends than point estimates.

Additionally, the fractional factorial design in no way precludes analysis of higher order

interactions, but rather can give insights to where they may exist, so that more focused

analysis can be performed.

Two levels (a high and a low) of four different Patrol Boat factors will be used

against eight different terrorist attack configurations. The Patrol Boat factors to be varied

are: the number of Patrol Boats, with levels of 2 and 4; patrolling speed, with levels of 2

and 5 knots; intercept speed, with levels of 15 and 25 knots; and patrol pattern, with

"levels" of barrier (1) and "bow-tie" or race-track(2). The eight different terrorist attack

configurations are comprised of attacks by either one or two terrorists: 1) one Dumb Bad

Guy, 2) one Smart Bad Guy, 3) two Dumb Bad Guys in a coordinated attack, 4) two

Dumb Bad Guys in a synchronized attack, 5) two Smart Bad Guys in a coordinated

attack, 6) two Smart Bad Guys in a synchronized attack, 7) one Smart Bad Guy and one

Dumb Bad Guy in a coordinated attack, 8) one Smart Bad Guy and one Dumb Bad Guy

in a synchronized attack. A coordinated attack is defined as one where both terrorists

start from the same point at the same time. A synchronized attack is defined as an attack

where terrorists start from opposite ends of the river at the same time. The following

diagrams (Figures 13 through 16) are representative of different set-ups, though not all-

inclusive. One point of interest is that patrolling stations for patrol boats are established

so there is full "horizontal" coverage of the area in front of the pier regardless of the

number of patrol boats.

50

Figure 13. Patrol Patterns: 4 PB's with bow-tie pattern and 2 PB's with barrier pattern shown

Figure 14. Attack by One Dumb Terrorist

(2000)(1000) (3000)(0000) (4000)

Pier

Exclusion Zone

(2000)(1000) (3000)(0000) (4000)

Pier

Exclusion Zone

(2000)(1000) (3000)(0000) (4000)

Pier

Exclusion Zone

(2000)(1000) (3000)(0000) (4000)

Pier

Exclusion Zone

(2000)(1000) (3000)(0000) (4000)

Pier

Exclusion Zone

(2000)(1000) (3000)(0000) (4000)

Pier

Exclusion Zone

(2000)(1000) (3000)(0000) (4000)

Pier

Exclusion Zone

(2000)(1000) (3000)(0000) (4000)

Pier

Exclusion Zone

51

Figure 15. Synchronized Attack by Two Smart Terrorists

Figure 16. Coordinated Attack by One Smart and One Dumb Terrorist

Patrol Boat values are notional, since this is a non-classified thesis, but are

reasonable small boat values and tactics. Terrorist attack scenarios are designed to

address CSG-9 concerns, and are based upon the findings of the Cole report cited in

Chapter One, but with the addition of another craft—which could be extended to more

(2000)(1000) (3000)(0000) (4000)

Pier

Exclusion Zone

(2000)(1000) (3000)(0000) (4000)

Pier

Exclusion Zone

(2000)(1000) (3000)(0000) (4000)

Pier

Exclusion Zone

(2000)(1000) (3000)(0000) (4000)

Pier

Exclusion Zone

(2000)(1000) (3000)(0000) (4000)

Pier

Exclusion Zone

(2000)(1000) (3000)(0000) (4000)

Pier

Exclusion Zone

(2000)(1000) (3000)(0000) (4000)

Pier

Exclusion Zone

(2000)(1000) (3000)(0000) (4000)

Pier

Exclusion Zone

52

than two if desired—to reflect the possibility that more than one boat may be used as

evidenced by the 11 September coordinated air attacks.

With all the pieces in place, the application of the fractional factorial experimental

design to the Patrol Boat factors and terrorist attacks of interest results in an 8 x 8 matrix

(Table 2).

Table 2. Fractional Factorial Design of Complete Experiment

Here the column headings are attack type rather than run number. Each output

row of the earlier matrix represents one output element of this matrix, which is to say

each element of this experiment matrix involves 500 runs of the model with a given

Patrol Boat configuration against a given attack type. Therefore, the entire experiment

consists of 8 design points, yielding 64 multivariate data points or design observations,

generated from 32,000 (64*500) individual observations or model runs. Each 500 run

observation generates the statistics described above for use in analysis of Patrol Boat

performance.

.

.

.

.

.

.

.

500
runs

7

500
runs

......22554Setup eight
(Design point 8)

.......12552Setup seven
(Design point 7)

.......12524Setup six
(Design point 6)

.......22522Setup five
(Design point 5)

.......11554Setup four
(Design point 4)

.......21552Setup three
(Design point 3)

.......21524Setup two
(Design point 2)

500
runs

500
runs

500
runs

500
runs

500
runs

500
runs

500
runs

11522Setup one
(Design point 1)

8654321Patrol
pattern

Intercept
speed

Patrol
speed

#
Boats

.

.

.

.

.

.

.

500
runs

7

500
runs

......22554Setup eight
(Design point 8)

.......12552Setup seven
(Design point 7)

.......12524Setup six
(Design point 6)

.......22522Setup five
(Design point 5)

.......11554Setup four
(Design point 4)

.......21552Setup three
(Design point 3)

.......21524Setup two
(Design point 2)

500
runs

500
runs

500
runs

500
runs

500
runs

500
runs

500
runs

11522Setup one
(Design point 1)

8654321Patrol
pattern

Intercept
speed

Patrol
speed

#
Boats

Terrorist Attack ConfigurationPatrol Boat Parameters (inputs)

Shaded area = output matrix

53

B. RESULTS AND ANALYSIS

Raw data from the model runs were collected in Excel spreadsheets. There is one

spreadsheet per design point. Here (Table 3), the raw data sheet for design point one is

shown; all sheets are displayed in Appendix B.

Table 3. Output Data for Design Point One

breach-
count

leakers-
count

numberAv
ailablePBs-
mean

numberInI
nterceptQ-
mean

numberInt
ercepted-
count

rangeAtInt
ercept-
mean

terror-
count

dp1.1 mean 2.93988 13.4509 1.830053 0.004025 30.88577 957.3882 0.152305
sd 1.768872 3.781042 0.051879 0.046242 5.095964 86.19461 0.359676
var 3.128908 14.29628 0.002691 0.002138 25.96885 7429.511 0.129367

dp1.2 mean 3.661323 14.48297 1.838598 0.001172 30.18437 954.2404 0.861723
sd 1.632848 3.811472 0.050074 0.002704 5.220641 81.17603 0.345536
var 2.666192 14.52732 0.002507 7.31E-06 27.2551 6589.548 0.119395

dp1.3 mean 3.881764 14.41683 1.835858 0.00449 31.08617 954.6288 0.991984
sd 1.68028 3.702083 0.049546 0.049565 5.177821 83.28889 0.533925
var 2.823341 13.70542 0.002455 0.002457 26.80983 6937.039 0.285076

dp1.4 mean 3.336673 14.12024 1.833563 0.00309 31.42285 960.5784 0.637275
sd 1.758193 3.925712 0.050049 0.033851 5.381767 81.91754 0.61335
var 3.091243 15.41122 0.002505 0.001146 28.96341 6710.484 0.376198

dp1.5 mean 4.643287 15.47295 1.837511 0.009546 30.26453 956.5379 1.843687
sd 1.658921 3.904067 0.048999 0.08931 5.189014 90.34237 0.390159
var 2.752018 15.24174 0.002401 0.007976 26.92587 8161.745 0.152224

dp1.6 mean 4.521042 15.26052 1.838607 0.002538 30.30661 953.5084 1.851703
sd 1.648005 3.957133 0.048999 0.020218 5.232753 85.98333 0.372299
var 2.715922 15.6589 0.002401 0.000409 27.3817 7393.134 0.138607

dp1.7 mean 3.897796 14.52705 1.838172 0.017015 30.94188 953.5896 1.114228
sd 1.684913 3.894797 0.047951 0.120719 5.283397 83.8448 0.430953
var 2.838931 15.16945 0.002299 0.014573 27.91429 7029.95 0.185721

dp1.8 mean 3.857715 14.58918 1.836917 0.018639 30.998 956.0409 1.114228
sd 1.711582 4.034684 0.049164 0.144296 5.309497 82.83713 0.466743
var 2.929514 16.27868 0.002417 0.020821 28.19076 6861.991 0.217849

Ybar1 . 3.842435 14.54008 1.83616 0.007564 30.76127 955.8141 0.598823
S2

1 . 2.868259 15.03612 0.00246 0.006191 27.42623 7139.175 0.07346

Var(means) 0.315703 0.396126 8.93E-06 4.63E-05 0.204812 5.699677 0.081763

V1 3.183961 15.43225 0.002469 0.006237 27.63104 7144.875 0.155223

54

The table shows the mean, standard deviation, and sample variance for each

statistic for each Patrol Boat configuration against each of the eight types of terrorist

attacks. The labeling in the first column of the table corresponds to the elements of the

8x8 matrix shown in Table 2. For example, the numbers following the label "dp1.1" are

the means, standard deviations and sample variances for all statistics collected from the

500 model runs that pit the first Patrol Boat configuration (two patrol boats in barrier

patterns, with patrolling speeds of 2 kts and intercepting speeds of 15 knots) against the

first type of terrorist attack (one Dumb Bad Guy). These values correspond to the upper

left hand element (element 1,1) of the output matrix of Table 2.

The last four rows of data in Table 3 are statistics for the Design Point as a whole.

They are the statistics that provide the measure of how well the Patrol Boat configuration

of Design Point One performed across the full spectrum of postulated attacks. These

design point statistics are used to generate the experiment's "metamodel" through

regression analysis. Each design point's statistics are the result of its 8 * 500 simulation

runs. Those statistics are, in other words, the collective result due to the changes in input

variables (Patrol Boat parameters) that define each design point. In the case of the

"breach-count" statistic, for example, Ybar1. is the average of all the mean values in the

"breach-count" column (i.e. the average of 2.93988, 3.661323 . . . 3.857715), S2
i . is the

average of all the sample variance values, Var(means) is the sample variance of the

sample means, and V1 is the total variance for the "breach-count" statistic for Design

Point One—V1 = S2
i . + Var(means). The same statistics are gathered at each design

point.

 These design point summary statistics are used to implement the "Robust design

philosophy" that considers both mean and total variance output values at each design

point to select the best configuration option available.[Ref. 25] The idea is that the mean

output at a design point does not tell the whole story of a configuration's performance. A

design point that has a very desirable mean value might have much higher variance

around that mean than another point with a slightly less desirable mean. For example,

consider a design point with a "breaches" mean of 3 and variance of 6 compared to

another with a mean of 4 and variance of 2. Assume the target mean value is 3 breaches.

A comparison of the mean values would lead to the former point's selection, but the

55

robust design selection would be the latter, because it provides a close to optimal

outcome with more certainty. The total variance term in the Robust design scheme is a

combination of variance inherent to the data within a design point (S2
i .) and the variance

in the (mean) statistical output "across the design point" (V(mean)). This means the

robust design allows for analysis both of output level and variance about an output level,

so output selection is based upon more than a point estimate.[Ref. 25 ; p. 289-90]

The bottom line is that analysis of the eight Patrol Boat configurations simulated

is performed by regressing the design point means and variances against the Patrol Boat

input variables. For a brief discussion of linear regression see Appendix C. Regressions

were performed for four output statistics: terrors, leakers, breachers, and range at

intercept.

1. "Terrors" Regression Models

 The data for the models are:

Table 4. Data for Regression Model for "Terrors" Statistic

For the general linear regression model, Y = βX, the "X" input variables, X1

through X4, are numPBs, patSpd, intSpd and patPat, or number of Patrol Boats, patrolling

speed, intercept speed and patrol pattern. Those inputs are used to generate one

regression model for the mean and another for total variance. In all regression models,

terms with p-values of .05 or less are considered statistically significant. The regression

model for the mean "terrors" produced the following results, with an R2 value of .974 and

an adjusted R2 of .939, which indicates the model accounts for 94% of the variance in the

“terrors” mean realized over the eight design points is accounted for by the model.

numPBs patSpd intSpd patPat Ybar i. Vi

designPoint1 2 2 15 1 0.598823 0.155223
designPoint2 4 2 15 2 0.411323 0.188209
designPoint3 2 5 15 2 0.586172 0.162351
designPoint4 4 5 15 1 0.411072 0.186097
designPoint5 2 2 25 2 0.506388 0.161764
designPoint6 4 2 25 1 0.306613 0.157854
designPoint7 2 5 25 1 0.490606 0.170289
designPoint8 4 5 25 2 0.374248 0.183041

Terrors

56

Table 5. Regression Output for "Terrors" Mean

The statistically significant variables are the number of Patrol Boats and Intercept

speed. For the range of attacks the probability a terrorist will succeed in an attack varies

from a low of about .3 at design point six to a high of about .6 at design point one—a

lower value is better. Hence there is a one hundred percent improvement realized by

varying the Patrol Boat configuration. The magnitude of the coefficient values for the

significant input variables indicates how one “unit” of change in the inputs affects the

output. Because the low and high variable levels were actually run set at +1 and –1 for

uniformity’s sake, the total unit change for each input variable is two units. This means

that one Patrol Boat unit is one Patrol Boat (since its actual range is also two, 2-4); and

one intercept speed unit is five knots (since its range is actually ten knots). Therefore, for

each additional patrol boat, an 8.48% improvement (or decrease in P(success) for the

terrorists) is achieved; and for each five knot increase in intercept speed a 4.14%

improvement is achieved. The coefficients are negative because the input variable values

are inversely related to the output value: increasing Patrol Boats and intercept speed

decreases a terrorist attack’s likelihood of success.

The mean regression results can be obtained or confirmed graphically, in a way

which is perhaps more intuitive. The following demonstrates a very powerful analytical

technique: looking at the data! A Graph of the terrors results for each design point versus

each attack type clearly shows that design point six consistently yields the best result:

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%Lower 95.0%Upper 95.0%
Intercept 0.460655686 0.008994571 51.21486 1.64E-05 0.4320309 0.48928 0.432031 0.48928
numPBs -0.084841558 0.008994571 -9.43253 0.002525 -0.1134663 -0.056217 -0.113466 -0.056217
patSpd 0.004869113 0.008994571 0.541339 0.625889 -0.0237557 0.033494 -0.023756 0.033494
intSpd -0.041191759 0.008994571 -4.579625 0.019545 -0.0698165 -0.012567 -0.069817 -0.012567
patPat 0.008877129 0.008994571 0.986943 0.396437 -0.0197476 0.037502 -0.019748 0.037502

57

Figure 17. Graphical Confirmation of Mean Regression Result

Figure 17 provides a summary of the relative performance of each design point across the

range of proposed attacks. The graph is generated from the raw data output of all design

points (seen Table 3 for design point one, and Appendix B for all other design points).

Further graphical displays confirm the significance of varying the levels of the

two factors (number of Patrol Boats and Intercept Speed) identified as statistically

significant through the regression output, and the concomitant insignificance of changing

the levels of the remaining two factors (Patrolling Speed and Patrol Pattern).

Figure 18. Graphic Showing the Advantage of Four Patrol Boats Over Two

P(terror) vs Design Point:
Number of Patrol Boats Effect

0
0.2
0.4
0.6
0.8

1

1 2 3 4 5 6 7 8

Design Point

P
(t

er
ro

r)

2 PB's

4 PB's

P(Successful Terrorist Attack) vs. Attack Type:
Comparison of Design Points

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8

Attack Type

P
(t

er
ro

r)
DP 1

DP 2

DP 3

DP 4

DP 5

DP 6

DP 7

DP 8

58

Figure 19. Graphic Showing the Advantage of Higher Intercept Speed

The increase in performance—decrease in P(terror)—is, perhaps, more obvious in Figure

18 than Figure 19, but both graphs confirm that changes in these two factors produce

clearly better outcomes. The pictures tell in an instant what the regression model

indicates through its t-statistics/p-values: it is always better to have more Patrol Boats,

and always better to intercept at a higher speed.

The graphs of the changes in P(terror) for changes in Patrolling Speed and Patrol

Pattern show that they have no significant effect:

Figure 20. Changes in Patrolling Speed Have No Effect Upon Output

P(terror) vs Design Point: Intercept Speed Effect

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8

Design Point

p(
te

rr
or

)

I Spd =15

I Spd = 25

P(terror) vs. Design Point:
 Patrolling Speed Effect

0
0.2
0.4
0.6
0.8

1

1 2 3 4 5 6 7 8

Design Point

P
(t

er
ro

r)

Pat Spd = 2

Pat Spd = 5

59

Figure 21. Changes in the Patrol Pattern Have No Effect Upon Output

Once again these two graphs (Figures 20 and 21) capture the meaning of the regression

model's t-statistics/p-values for the factors depicted.

One final graphical display, a factor interaction plot, confirms the inclusion of

only main effects in the regression model, by showing there are no interactions between

the statistically significant factors. This simple but powerful plot also provides a sense of

the relative worth of the two significant factors. The assumption that main effects

dominate, which was made for efficiency's sake in approaching this exploratory analysis,

is shown to have been a reasonable one:

Figure 22. No Interaction Between Significant Factors

The fact that the two lines are virtually parallel indicates that the benefit of increasing

intercept speed does not depend upon the number of Patrol Boats and vice versa.

P(terror) vs. Design Point: Patrol Pattern Effect

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8

Design Point

P
(t

er
ro

r)

Barrier

Bow Tie

Factor Interaction Plot (Number PB's and Int Spd)

0

0.2

0.4

0.6

0.8

2 4

Number Patrol Boats

P
(t

er
ro

r)

Low I-Spd

High I-Spd

60

Another way of looking at this is that, for each line in the plot, the slope change defined

by its end points is dependent only upon the number of Patrol Boats. Hence the two

factors can be considered independently, which is very important in the analysis of the

problem, since the opposite case—a situation where an interaction were present—would

mean no conclusions could be drawn about the importance of either factor without

considering both factors.

One other insight gained from the interaction plot concerns the relative effect of

the two significant factors upon the P(terror) measure of performance. The change in

P(terror) due to the change in the number of Patrol Boats can be measured horizontally

across the plot from one end of each line to the other; and the change due to intercept

speed vertically, from the corresponding end points of the separate lines:

Figure 23. Relative Effects of Significant Factors Upon P(terror) Outcome

This analytical insight allows a decision maker to determine which of the two significant

factors in the model yields the greater benefit, should a choice between the two be

necessary because of some exterior constraint—such as budgeting. In this case, the effect

of increasing Intercept Speed is greater than that of increasing the number of Patrol

Boats, which is generally consistent with the other measures of performance.

Similar plots for all statistics analyzed are included in Appendix D. In all cases

the mean regression models are confirmed—including the omission of interaction terms.

 The results for the total variance model had an R2 of .683, with an adjusted R2 of

.260:

Factor Interaction Plot (Number PB's and Int Spd)

0

0.2

0.4

0.6

0.8

2 4

Number Patrol Boats

Low I-Spd

High I-Spd

Change in P(terror) from
change in NumPB’s

Change
from
Spd

Factor Interaction Plot (Number PB's and Int Spd)

0

0.2

0.4

0.6

0.8

2 4

Number Patrol Boats

Low I-Spd

High I-Spd

Change in P(terror) from
change in NumPB’s

Change
from
Spd

61

Table 6. Regression Output for "Terrors" Total Variance

The low R2 value indicates that there is no significant variance in the terror

statistic from design point to design point. The variance in the terror statistic within the

metamodel exists primarily within the individual design points rather than across them.

This means that metamodel variance can be assumed constant, and that the mean value

regression alone is the best ind icator of the optimal design point or Patrol Boat

configuration. Hence, for this measure of effectiveness, design point six, which has the

lowest mean value, is the optimal configuration.

2. "Leakers" Regression Models

The data for the models are:

Table 7. Data for Regression Model for "Leakers" Statistic

The regression model for the mean number of leakers across the design points has

an R2 value of .992 and an adjust R2 value of .981, indicating the model explains virtually

all the variance in the mean output.

Table 8. Regression Output for “Leakers” Mean

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%Lower 95.0%Upper 95.0%
Intercept 0.170603814 0.004064567 41.97342 2.98E-05 0.1576685 0.183539 0.157669 0.183539
numPBs 0.008196867 0.004064567 2.016664 0.137097 -0.0047384 0.021132 -0.004738 0.021132
patSpd 0.0048411 0.004064567 1.191049 0.319281 -0.0080942 0.017776 -0.008094 0.017776
intSpd -0.002366582 0.004064567 -0.582247 0.601271 -0.0153019 0.010569 -0.015302 0.010569
patPat 0.003237603 0.004064567 0.796543 0.483928 -0.0096977 0.016173 -0.009698 0.016173

numPBs patSpd intSpd patPat Ybari. Vi

designPoint1 2 2 15 1 14.54008 15.4322502
designPoint2 4 2 15 2 8.473697 8.54557976
designPoint3 2 5 15 2 14.88477 14.9307669
designPoint4 4 5 15 1 6.933116 7.04577238
designPoint5 2 2 25 2 9.19489 9.56027988
designPoint6 4 2 25 1 2.825902 2.80819265
designPoint7 2 5 25 1 8.372996 8.46694949
designPoint8 4 5 25 2 3.480711 3.24499689

Leakers

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0%Upper 95.0%
Intercept 8.58827 0.214392521 40.05863 3.42E-05 7.905976965 9.270564 7.90597697 9.270564
numPBs -3.159914 0.214392521 -14.73892 0.000678 -3.8422069 -2.47762 -3.8422069 -2.47762
patSpd -0.170372 0.214392521 -0.794673 0.484865 -0.85266532 0.511921 -0.85266532 0.511921
intSpd -2.619646 0.214392521 -12.21892 0.00118 -3.30193887 -1.937352 -3.30193887 -1.937352
patPat 0.420247 0.214392521 1.960174 0.144828 -0.26204658 1.10254 -0.26204658 1.10254

62

The same two input variables (number of Patrol Boats and intercept speed) are

again statistically significant, and negative to show that with their increases, the number

of leakers goes down. With each additional Patrol Boat, the number of leakers is

projected to decrease by 3.16; and with each 5 knot increase in intercept speed is it

projected to decrease by 2.62.

The regression model for leaker variance across all design points also has an R2

value of .992 and an adjust R2 value of .981

Table 9. Regression Output for “Leakers” Total Variation

The statistically significant variables within the variance model are the same as in

the mean model, indicating that they drive metamodel variance as well as mean. In this

case the variance from one design point to another cannot be assumed constant, and must

be considered in selecting most “robust” design point for this measure of effectiveness.

A comparison of the regression models as well as of the data themselves shows that

leaker variance tracks with its mean: as the mean goes up, so does variance, and vice

versa. This means there is no concern about choosing a “false optimal” design point by

considering the mean alone. This result strongly confirms the selection of the design

point with best mean value, since that design point also has the lowest variance about its

mean. Again the best design point is Patrol Boat configuration number six.

3. "Breaches" Regression Models

The data for the models are:

Table 10. Data for Regression Models for "Breaches" Statistic

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0%Upper 95.0%
Intercept 8.754349 0.227279205 38.51804 3.85E-05 8.031043975 9.477653 8.03104397 9.477653
numPBs -3.343213 0.227279205 -14.70972 0.000682 -4.06651764 -2.619909 -4.06651764 -2.619909
patSpd -0.332227 0.227279205 -1.461758 0.239967 -1.05553165 0.391077 -1.05553165 0.391077
intSpd -2.734244 0.227279205 -12.03033 0.001236 -3.45754834 -2.010939 -3.45754834 -2.010939
patPat 0.316057 0.227279205 1.390613 0.258545 -0.40724721 1.039362 -0.40724721 1.039362

numPBs patSpd intSpd patPat Ybari. Vi

designPoint1 2 2 15 1 3.842435 3.183961
designPoint2 4 2 15 2 2.28482 2.161019
designPoint3 2 5 15 2 3.842184 3.266478
designPoint4 4 5 15 1 2.330912 2.105665
designPoint5 2 2 25 2 2.318136 1.848684
designPoint6 4 2 25 1 1.406563 1.264091
designPoint7 2 5 25 1 2.550852 2.072597
designPoint8 4 5 25 2 1.438377 1.343602

Breaches

63

The regression model for the mean number of breaches per design point has an R2

value of .976 and an adjust R2 value of .944.

Table 11. Regression Output for “Breaches” Mean

Here, the model coefficients, that indicate the per unit change in the number of

breaches, are smaller than the coefficients for the number of leakers, but that difference in

magnitude corresponds with the difference in magnitude between the average number of

leakers and breaches. The number of Patrol Boats is still has the dominant effect upon

the outcome.

The regression model for the variation in the number of breaches across the

design points has an R2 value of .970 and an adjust R2 value of .931.

Table 12. Regression Output for “Breaches” Total Variance

The results for the “breaches” statistic of the metamodel are very similar to those

of the “leakers.” Both regressions yield good models, and the model results track each

other exactly. Again, the statistically significant variables in the Patrol Boat

configuration are the number of boats and their intercept speeds; and again, because

variance decreases along with the mean, the design point with the most favorable mean

value also has the lowest variance about that value. The best point for the “breaches”

statistic is design point six.

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%Lower 95.0%Upper 95.0%
Intercept 2.501785 0.077842076 32.13924 6.62E-05 2.25405636 2.749513 2.254056 2.749513
numPBs -0.636617 0.077842076 -8.178315 0.003825 -0.88434544 -0.388889 -0.884345 -0.388889
patSpd 0.038796 0.077842076 0.498398 0.652452 -0.20893212 0.286525 -0.208932 0.286525
intSpd -0.573303 0.077842076 -7.364948 0.005174 -0.82103131 -0.325574 -0.821031 -0.325574
patPat -0.030906 0.077842076 -0.397029 0.717905 -0.27863402 0.216823 -0.278634 0.216823

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%Lower 95.0%Upper 95.0%
Intercept 2.155762 0.068965181 31.2587 7.19E-05 1.93628384 2.37524 1.936284 2.37524
numPBs -0.437168 0.068965181 -6.338966 0.00794 -0.65664611 -0.21769 -0.656646 -0.21769
patSpd 0.041323 0.068965181 0.599191 0.591275 -0.17815485 0.260802 -0.178155 0.260802
intSpd -0.523519 0.068965181 -7.591057 0.004743 -0.74299684 -0.30404 -0.742997 -0.30404
patPat -0.000816 0.068965181 -0.011838 0.991298 -0.22029457 0.218662 -0.220295 0.218662

64

4. "Range at Intercept" Regression Models

The range at intercept statistic is the mean range of individual run mean ranges.

The data for the models are:

Table 13. Data for Regression Models for “Range at Intercept” Statistic

The regression model for the mean range at intercept as a function of design point

has an R2 value of .976 and an adjusted R2 value of .945.

Table 14. Regression Output for “Range at Intercept” Mean

The statistically significant variables for the mean of this measure of performance are the

same as for all others analyzed. In this one case the model coefficients are positive, since

a higher range at intercept is preferable. With each additional Patrol Boat the intercept

range increase by 11.8 yards, while with each 5 knot increase in intercept speed the range

is move away from the HVU about 16 yards. Given that the average range at intercept is

over 900 yards from the HVU at all design points, it may arguable as to whether or not

changes of less than 20 yards are significant. In any case, a more desirable outcome is

realized as a natural effect of improving other performance measures, whether this

measure of performance is considered vital or not.

The regression model for the variation in the number of breaches across the

design points has an R2 value of .165 and an adjusted R2 value of zero—the Excel output

is negative, but that is nonsensical.

numPBs patSpd intSpd patPat Ybari. Vi

designPoint1 2 2 15 1 955.8141 7144.87482
designPoint2 4 2 15 2 984.8698 6393.87433
designPoint3 2 5 15 2 960.3437 6685.79177
designPoint4 4 5 15 1 982.0539 6405.11773
designPoint5 2 2 25 2 984.2688 6780.72977
designPoint6 4 2 25 1 1010.97 6744.33899
designPoint7 2 5 25 1 998.3512 6490.6863
designPoint8 4 5 25 2 1015.697 7005.47552

Intercept Range

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%Lower 95.0%Upper 95.0%
Intercept 986.54606 1.791654631 550.6341 1.32E-08 980.844209 992.2479 980.844209 992.24791
numPBs 11.85161 1.791654631 6.614897 0.007035 6.14976022 17.55346 6.14976022 17.55346
patSpd 2.5654697 1.791654631 1.4319 0.247582 -3.1363803 8.26732 -3.1363803 8.2673197
intSpd 15.775674 1.791654631 8.805087 0.003086 10.0738244 21.47752 10.0738244 21.477524
patPat -0.251179 1.791654631 -0.140194 0.89739 -5.953029 5.450671 -5.953029 5.450671

65

Table 15. Regression Output for “Range at Intercept” Total Variance

As with the model for variance of the “terrors” statistic, this model result indicates that

variance in the statistic across the experimental design points can be assumed constant.

This leaves the design point with the most desirable mean as the most desirable design

point. Design point eight yielded the greatest mean range across the spectrum of

proposed attacks, and is therefore the optimal design point for the “Range at Intercept”

measure of performance.

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%Lower 95.0%Upper 95.0%
Intercept 6706.3612 135.0019365 49.67604 1.8E-05 6276.72434 7135.998 6276.72434 7135.998
numPBs -69.159513 135.0019365 -0.512285 0.643782 -498.79633 360.4773 -498.79633 360.4773
patSpd -59.593324 135.0019365 -0.441426 0.688783 -489.23014 370.0435 -489.23014 370.04349
intSpd 48.946491 135.0019365 0.362561 0.74097 -380.69033 478.5833 -380.69033 478.58331
patPat 10.106695 135.0019365 0.074863 0.945036 -419.53012 439.7435 -419.53012 439.74351

66

THIS PAGE INTENTIONALLY LEFT BLANK

67

 V. CONCLUSIONS AND RECOMMENDATIONS

A. ANALYTICAL CONCLUSIONS

First, by way of a reality check, it should be recalled that the overarching goal of

the Force Protection model's analysis is to provide insights into the effects of varying key

Patrol Boat factors. It is very important to recognize that the goal of this or any

simulation can never be to provide the "right" answer to the question of how to deploy

assets. Regardless of the validity of any simulation, it can only produce results based

upon how well input parameters represent reality. Certain simulation parameters are

simply unknown or random, such as arrival rates of contacts into the river, or the time of

a terrorist attack. These parameters must always remain estimates. Other tactical

parameters, such as the number of Patrol Boats, Patrol Boat intercept and patrolling

speeds, and patrolling patterns, are policy parameters and therefore are "known." Hence,

while there can be a danger of looking to simulation outputs as some sort of Rosetta

stone, which, if properly interpreted or analyzed will yield ground truth, it is also true that

simulation results will provide very realistic estimates insofar as realistic values for any

unknown parameters are used. The simulation tool becomes more valuable as the

intelligence estimates of its parameter space improve.

That having been said, the results of the four statistical outcomes delineated above

yield informative cumulative results and insights. The most apparent conclusion is Patrol

Boat configuration effectiveness is primarily a function of the number of boats employed

and their intercept speeds. In most cases, it seems that intercept speed is the most

significant effect, though it is not exactly clear how the two variables’ relative worths are

precisely determined—the factor interaction plots are a good start. The interesting

insight gained from this fundamental observation is that neither patrol speed nor the

patrol pattern is significant. The practical value of this result is that the simplest pattern

can be selected and the most efficient patrol speed used. Simplicity of pattern has the

advantage of allowing a boat operator to expend most of his effort looking for threats

rather than plotting his course. As for patrolling speed, it may well be that cutting a

patrolling craft’s speed by more than half will result in greater fuel efficiency and fewer

68

maintenance problems. In any case, the boat operators are not constrained to use a high

patrolling speed.

As for the optimal Patrol Boat configuration, three of the four statistical outputs

analyzed yielded design point six as the optimal configuration. Only the “Range at

Intercept” statistic points to another (design point eight). The graphs of relative design

point performance show that these two design points (six and eight) consistently yield

similar results, which stands to reason. Since the number of Patrol Boats and the intercept

speed are the only two significant input variables, design points six and eight are really

the same design point, since they alone both hold those variables at the same level.

Because neither the patrolling speed nor the patrolling pattern is significant, changes in

their levels have no significant effect upon outcomes. Design points six and eight are the

two configurations that hold both the number of patrol boats and their intercept speeds at

their high levels. They are, therefore, both the optimal configuration, since they both

have four Patrol Boats with intercept speeds of 15 knots.

B. RECOMMENDATIONS

The specific and limited recommendation derived from this exploratory analysis

is to use larger numbers of patrol boats and higher intercept speeds. It is further

recommended that the patrolling pattern and patrolling speed be determined based upon

practical considerations specific to waterfront layout—for patrol pattern—and Patrol

Boat characteristics—for speed. The more general recommendation is that the model be

exercised further with more specific parameters determined by those tasked with the

waterfront Force Protection mission. The model has given very reasonable results with

notional data. It can be run locally with more sensitive data, and analyzed as

demonstrated in Chapter Four, with the Excel Data Analysis Tool kit (or simply with

“straight-stick” Excel graphics) generally available at government installations.

C. FOLLOW-ON WORK

Follow-on work is needed in two major areas: further software development, and

more detailed analysis. The model extends Simkit's Movers and movement in at least

two significant ways: it adds an intercept capacity, which is critical in many operational

69

applications, and effects a kind of agency within Movers through the TypedBasicMover

extension. That notwithstanding, there is much more work to be done. The model was

designed with loose coupling in mind, but there are many improvements to be made to

allow more universal application. The ideal goal is to allow the end user to define both

the playing field and players of the simulation. That ideal is currently only partially

achieved. Additionally, follow-on software work should focus on generating graphical

output that can be incorporated with the graphical database developed by the Johns

Hopkins APL. Some very specific movement issues could be further developed. In

particular, time delays for detection and acceleration could be incorporated. Detection

delays are easily added, but the acceleration problem is a significant one, since the

computation of an intercept point requires the use of an intercept speed. A multi-step

calculation over time seems possible, but somewhat problematic. In any case, it is a

problem worth pursuing, since it would add a great deal of realism to the simulation.

The exploratory analysis of the previous chapter provides good first level insights,

but is not an exhaustive study of the feasible parameter space. More detailed follow-on

analysis should look more closely at response surfaces across a broader range of input

parameters to provide more exact findings about how specific changes affect

performance. The linear regression models seem to capture a great deal of output

variation, but different models, higher order terms, could be investigated. An advantage

of the fractional factorial design, is that the experiment need not be re-engineered to

allow such deeper analyses. It may well be that follow-on thesis work should be done

using—rather than developing—this model at the classified level, so more specific

questions can be answered.

70

THIS PAGE INTENTIONALLY LEFT BLANK

71

APPENDIX A. JAVA CODE FOR THREAT INTERCEPT POINT

/**@param pb the PBMM that controls the PB to be used for the intercept

 *@param threat the threat that needs to be intercepted

 *@ return the Coordinate of the intercept

 *This method determines whether or not a threat can be intercepted by

 *a given PBMM. If so, it passes the intercept point and schedules the end of the

 *intercept at the intercept time calculated within. If not, it returns null

 **/

 public Coordinate getIntercept(PBMM pb, TypedBasicMover threat){

 tX = threat.getVelocity().getXCoord();

 tY = threat.getVelocity().getYCoord();

 tXPos = threat.getCurrentLocation().getXCoord();

 tYPos = threat.getCurrentLocation().getYCoord();

 pBXPos = pb.getLocation().getXCoord();

 pBYPos = pb.getLocation().getYCoord();

 dX = tXPos - pBXPos;

 dY = tYPos - pBYPos;

 k = dY * tX - dX*tY;

 //define constants of quadratic forumula to solve for y component of

 //O/S intercept vector based upon intercept speed.

 a = Math.pow(dY,2.0) + Math.pow(dX,2.0);

 b = 2.0 * dX * k;

 c = Math.pow(k,2.0) - Math.pow(pb.getInterceptSpeed(),2.0)*Math.pow(dY,2.0);

 w = Math.pow(b,2.0) - 4.0*a*c;

 if (w < 0.0){

 firePropertyChange("imaginaryRoot", imaginaryRoot, ++imaginaryRoot);

 return null;

 }

 else{

 pbY1 = (-b +Math.sqrt(w))/ (2.0 * a);

 pbY2 = (-b - Math.sqrt(w))/(2.0 * a);

 time1 = dY/(pbY1 -tY);

 time2 = dY/(pbY2 - tY);

72

 if ((time1 >=0.0) && (time2 >=0.0)){

 interceptTime = Math.min(time1,time2);

 intX = tXPos + interceptTime * tX;

 intY = tYPos + interceptTime * tY;

 Coordinate intPt = new Coordinate(intX,intY);

 if (intX >= 0.0 && intX <= RiverData.RIVER_SIZE_X && intY >=0.0 && intY <=
RiverData.RIVER_SIZE_Y){

 return intPt;

 }

 else{

 firePropertyChange("outsideRiver", outsideRiver, ++outsideRiver);

 return null;

 }

 }

 else if (time1 >= 0.0){

 interceptTime = time1;

 intX = tXPos + interceptTime * tX;

 intY = tYPos + interceptTime * tY;

 Coordinate intPt = new Coordinate(intX,intY);

 if (intX >= 0.0 && intX <= RiverData.RIVER_SIZE_X && intY >=0.0 && intY <=
RiverData.RIVER_SIZE_Y){

 return intPt;

 }

 else{

 firePropertyChange("outsideRiver", outsideRiver, ++outsideRiver);

 return null;

 }

 }

 else if (time2 >= 0.0){

 interceptTime = time2;

 intX = tXPos + interceptTime * tX;

 intY = tYPos + interceptTime * tY;

 Coordinate intPt = new Coordinate(intX,intY);

 if (intX >= 0.0 && intX <= RiverData.RIVER_SIZE_X && intY >=0.0 && intY <=
RiverData.RIVER_SIZE_Y){

 return intPt;

 }

73

 else{

 firePropertyChange("outsideRiver",
outsideRiver, ++outsideRiver);

 return null;

 }

 }

 else {

 firePropertyChange("interceptPassed",
interceptPassed, ++interceptPassed);

 return null;

 }

 }

 }

74

THIS PAGE INTENTIONALLY LEFT BLANK

75

APPENDIX B. DESIGN POINT DATA

Table 16. Design Point One Data

breach-
count

leakers-
count

numberAv
ailablePBs-
mean

numberInI
nterceptQ-
mean

numberInt
ercepted-
count

rangeAtInt
ercept-
mean

terror-
count

dp1.1 mean 2.93988 13.4509 1.830053 0.004025 30.88577 957.3882 0.152305
sd 1.768872 3.781042 0.051879 0.046242 5.095964 86.19461 0.359676
var 3.128908 14.29628 0.002691 0.002138 25.96885 7429.511 0.129367

dp1.2 mean 3.661323 14.48297 1.838598 0.001172 30.18437 954.2404 0.861723
sd 1.632848 3.811472 0.050074 0.002704 5.220641 81.17603 0.345536
var 2.666192 14.52732 0.002507 7.31E-06 27.2551 6589.548 0.119395

dp1.3 mean 3.881764 14.41683 1.835858 0.00449 31.08617 954.6288 0.991984
sd 1.68028 3.702083 0.049546 0.049565 5.177821 83.28889 0.533925
var 2.823341 13.70542 0.002455 0.002457 26.80983 6937.039 0.285076

dp1.4 mean 3.336673 14.12024 1.833563 0.00309 31.42285 960.5784 0.637275
sd 1.758193 3.925712 0.050049 0.033851 5.381767 81.91754 0.61335
var 3.091243 15.41122 0.002505 0.001146 28.96341 6710.484 0.376198

dp1.5 mean 4.643287 15.47295 1.837511 0.009546 30.26453 956.5379 1.843687
sd 1.658921 3.904067 0.048999 0.08931 5.189014 90.34237 0.390159
var 2.752018 15.24174 0.002401 0.007976 26.92587 8161.745 0.152224

dp1.6 mean 4.521042 15.26052 1.838607 0.002538 30.30661 953.5084 1.851703
sd 1.648005 3.957133 0.048999 0.020218 5.232753 85.98333 0.372299
var 2.715922 15.6589 0.002401 0.000409 27.3817 7393.134 0.138607

dp1.7 mean 3.897796 14.52705 1.838172 0.017015 30.94188 953.5896 1.114228
sd 1.684913 3.894797 0.047951 0.120719 5.283397 83.8448 0.430953
var 2.838931 15.16945 0.002299 0.014573 27.91429 7029.95 0.185721

dp1.8 mean 3.857715 14.58918 1.836917 0.018639 30.998 956.0409 1.114228
sd 1.711582 4.034684 0.049164 0.144296 5.309497 82.83713 0.466743
var 2.929514 16.27868 0.002417 0.020821 28.19076 6861.991 0.217849

Ybar1. 3.842435 14.54008 1.83616 0.007564 30.76127 955.8141 0.598823
S2

1. 2.868259 15.03612 0.00246 0.006191 27.42623 7139.175 0.07346

Var(means) 0.315703 0.396126 8.93E-06 4.63E-05 0.204812 5.699677 0.081763

V1 3.183961 15.43225 0.002469 0.006237 27.63104 7144.875 0.155223

76

Table 17. Design Point Two Data

breach-
count

leakers-
count

numberAv
ailablePBs-
mean

numberInI
nterceptQ-
mean

numberInt
ercepted-
count

rangeAtInt
ercept-
mean

terror-
count

dp2.1 mean 1.521042 7.61523 3.90508 0 31.46293 992.3243 0.01002
sd 1.23416 2.816376 0.030197 0 5.452251 77.09115 0.099697
var 1.523151 7.931976 0.000912 0 29.72704 5943.046 0.00994

dp2.2 mean 2.216433 8.490982 3.906153 0 30.88778 978.7149 0.689379
sd 1.352244 2.925003 0.03176 0 5.472038 76.71705 0.463212
var 1.828565 8.555641 0.001009 0 29.9432 5885.505 0.214566

dp2.3 mean 1.893788 7.871743 3.899301 2.73E-07 32.25852 982.6089 0.166333
sd 1.337872 2.807689 0.033242 6.11E-06 5.309999 79.63415 0.378101
var 1.789901 7.883116 0.001105 3.73E-11 28.19609 6341.598 0.142961

dp2.4 mean 1.523046 7.777555 3.900288 0 32.25852 995.4897 0.038076
sd 1.217744 2.763906 0.041766 0 5.396647 79.86006 0.201782
var 1.482902 7.639174 0.001744 0 29.1238 6377.629 0.040716

dp2.5 mean 3.288577 9.52505 3.904803 0 30.89579 978.1589 1.695391
sd 1.358038 2.864559 0.031397 0 5.397936 83.17954 0.510334
var 1.844267 8.205697 0.000986 0 29.13771 6918.836 0.260441

dp2.6 mean 3.276553 9.418838 3.90402 0 30.84369 981.2241 1.723447
sd 1.367902 2.810431 0.036631 0 5.457725 82.5569 0.478106
var 1.871156 7.89852 0.001342 0 29.78676 6815.641 0.228586

dp2.7 mean 2.276553 8.496994 3.904062 0 31.6012 985.4207 0.777555
sd 1.24009 2.707548 0.032566 0 5.551446 79.92628 0.430533
var 1.537823 7.330814 0.001061 0 30.81855 6388.211 0.185359

dp2.8 mean 2.282565 8.593186 3.903893 0 31.57515 985.0167 0.781563
sd 1.274683 2.967839 0.033127 0 5.39186 78.5618 0.423199
var 1.624816 8.808066 0.001097 0 29.07215 6171.957 0.179097

Ybar2. 2.28482 8.473697 3.90345 3.42E-08 31.47295 984.8698 0.411323
S2

2. 1.687822 8.031625 0.001157 4.66E-12 29.47566 6355.303 0.060474

Var(means) 0.473197 0.513954 5.7E-06 9.34E-15 0.333248 38.57139 0.127735

V2 2.161019 8.54558 0.001163 4.67E-12 29.80891 6393.874 0.188209

77

Table 18. Design Point Three Data

breach-
count

leakers-
count

numberAv
ailablePBs-
mean

numberInI
nterceptQ-
mean

numberInt
ercepted-
count

rangeAtInt
ercept-
mean

terror-
count

dp3.1 mean 2.871743 14.14028 1.8374 0.001226 30.8998 967.6103 0.160321
sd 1.720297 3.821883 0.049928 0.003014 5.152492 86.03063 0.367271
var 2.959421 14.60679 0.002493 9.08E-06 26.54817 7401.269 0.134888

dp3.2 mean 3.559118 14.48697 1.843198 0.012113 30.31663 961.0372 0.815631
sd 1.698692 3.889195 0.048941 0.140274 5.214663 79.47004 0.388174
var 2.885554 15.12583 0.002395 0.019677 27.19271 6315.487 0.150679

dp3.3 mean 3.805611 14.89178 1.838992 0.002014 31.12425 957.7534 0.97996
sd 1.687507 3.796573 0.046642 0.010686 5.275216 83.19879 0.623824
var 2.847679 14.41397 0.002175 0.000114 27.8279 6922.039 0.389156

dp3.4 mean 3.396794 14.56513 1.837979 0.001562 31.42886 969.8448 0.643287
sd 1.750178 3.860685 0.048068 0.00323 5.221639 81.58087 0.662393
var 3.063122 14.90489 0.002311 1.04E-05 27.26551 6655.438 0.438765

dp3.5 mean 4.655311 15.60922 1.840242 0.002259 30.37275 958.7996 1.817635
sd 1.690223 3.818365 0.05098 0.020226 5.366239 82.76137 0.430757
var 2.856854 14.57991 0.002599 0.000409 28.79652 6849.445 0.185552

dp3.6 mean 4.657315 15.61323 1.840242 0.002259 30.36874 958.884 1.821643
sd 1.685278 3.819826 0.05098 0.020226 5.36165 82.86046 0.418273
var 2.840162 14.59107 0.002599 0.000409 28.74729 6865.856 0.174952

dp3.7 mean 3.895792 14.88577 1.841277 0.001526 31.00601 954.4103 1.082164
sd 1.697258 3.813548 0.046378 0.004028 5.324978 78.1647 0.477677
var 2.880685 14.54315 0.002151 1.62E-05 28.35539 6109.721 0.228175

dp3.8 mean 3.895792 14.88577 1.841277 0.001526 31.00601 954.4103 1.082164
sd 1.697258 3.813548 0.046378 0.004028 5.324978 78.1647 0.477677
var 2.880685 14.54315 0.002151 1.62E-05 28.35539 6109.721 0.228175

Ybar3. 3.842184 14.88477 1.840076 0.003061 30.81538 960.3437 0.586172
S2

3. 2.90177 14.6636 0.002359 0.002583 27.88611 6653.622 0.087095

Var(means) 0.364707 0.267172 3.63E-06 1.35E-05 0.170818 32.16972 0.075256

V3 3.266478 14.93077 0.002363 0.002596 28.05693 6685.792 0.162351

78

Table 19. Design Point Four Data

breach-
count

leakers-
count

numberAv
ailablePBs-
mean

numberInI
nterceptQ-
mean

numberInt
ercepted-
count

rangeAtInt
ercept-
mean

terror-
count

dp4.1 mean 1.488978 6.164329 3.897723 0 31.30862 987.7685 0.004008
sd 1.181084 2.408371 0.033435 0 5.408693 77.20181 0.063245
var 1.394959 5.800251 0.001118 0 29.25396 5960.119 0.004

dp4.2 mean 2.344689 6.881764 3.896577 0 30.5992 976.4362 0.709419
sd 1.320759 2.546761 0.035509 0 5.445207 81.30257 0.454486
var 1.744404 6.485992 0.001261 0 29.65028 6610.108 0.206558

dp4.3 mean 1.875752 6.370741 3.894981 0 32.1523 979.0659 0.152305
sd 1.261331 2.512784 0.030843 0 5.400882 80.3636 0.365217
var 1.590957 6.314082 0.000951 0 29.16953 6458.308 0.133383

dp4.4 mean 1.511022 6.206413 3.892906 2.82E-06 32.37275 991.675 0.018036
sd 1.221206 2.534002 0.035348 6.30E-05 5.400556 76.33099 0.147521
var 1.491344 6.421164 0.001249 3.97E-09 29.166 5826.42 0.021762

dp4.5 mean 3.346693 7.783567 3.899175 0 30.62725 974.9802 1.669339
sd 1.308776 2.543053 0.030912 0 5.381933 85.87928 0.51179
var 1.712896 6.467119 0.000956 0 28.9652 7375.251 0.261929

dp4.6 mean 3.322645 7.951904 3.899218 0 30.76152 978.9052 1.693387
sd 1.285581 2.651379 0.030281 0 5.543298 80.51856 0.526579
var 1.652719 7.029811 0.000917 0 30.72816 6483.238 0.277285

dp4.7 mean 2.374749 6.977956 3.895178 0 31.62725 982.1045 0.795591
sd 1.23935 2.671716 0.032747 0 5.390135 80.47742 0.403674
var 1.535988 7.138067 0.001072 0 29.05355 6476.616 0.162952

dp4.8 mean 2.382766 7.128257 3.895927 0 31.55311 985.4959 0.821643
sd 1.26419 2.64719 0.034487 0 5.445853 76.02263 0.388402
var 1.598176 7.007614 0.001189 0 29.65731 5779.44 0.150856

Y4. 2.330912 6.933116 3.896461 3.52E-07 31.37525 982.0539 0.411072
S2

4. 1.59018 6.583012 0.001089 4.96E-10 29.4555 6371.188 0.057825

Var(means) 0.515484 0.46276 4.76E-06 9.94E-13 0.462401 33.93009 0.128273

V4 2.105665 7.045772 0.001094 4.97E-10 29.9179 6405.118 0.186097

79

Table 20. Design Point Five Data

breach-
count

leakers-
count

numberAv
ailablePBs-
mean

numberInI
nterceptQ-
mean

numberInt
ercepted-
count

rangeAtInt
ercept-
mean

terror-
count

dp5.1 mean 1.406814 8.436874 1.89181 3.53E-04 31.40681 988.049 0.076152
sd 1.191011 2.976063 0.032411 0.001124 5.339934 79.05218 0.265508
var 1.418508 8.856951 0.00105 1.26E-06 28.51489 6249.247 0.070494

dp5.2 mean 2.172345 9.164329 1.892792 3.08E-04 30.83768 980.3963 0.757515
sd 1.258847 3.169421 0.034096 0.001055 5.408207 86.98555 0.429016
var 1.584695 10.04523 0.001163 1.11E-06 29.2487 7566.486 0.184055

dp5.3 mean 2.170341 8.997996 1.886903 0.006115 31.71543 981.4791 0.659319
sd 1.237403 2.935381 0.036688 0.072923 5.371274 80.87712 0.552621
var 1.531167 8.616462 0.001346 0.005318 28.85058 6541.108 0.30539

dp5.4 mean 1.785571 8.567134 1.888897 0.019514 31.96393 994.7002 0.432866
sd 1.286364 3.087252 0.033733 0.134813 5.347625 78.28273 0.567707
var 1.654731 9.531127 0.001138 0.018174 28.59709 6128.185 0.322291

dp5.5 mean 3.128257 9.903808 1.894741 3.41E-04 30.73547 976.6556 1.729459
sd 1.217173 3.119888 0.034573 0.001113 5.331027 82.65811 0.471
var 1.481509 9.7337 0.001195 1.24E-06 28.41984 6832.363 0.221841

dp5.6 mean 3.082164 9.957916 1.893316 3.94E-04 30.68537 980.6809 1.699399
sd 1.2318 2.993338 0.032584 0.001559 5.296737 79.11845 0.480357
var 1.517332 8.960073 0.001062 2.43E-06 28.05543 6259.73 0.230743

dp5.7 mean 2.426854 9.222445 1.890801 3.96E-04 31.52305 986.2909 0.953908
sd 1.170316 2.956956 0.0325 0.001295 5.44717 87.42914 0.374755
var 1.369639 8.743592 0.001056 1.68E-06 29.67166 7643.854 0.140442

dp5.8 mean 2.372745 9.308617 1.891251 2.80E-04 31.46894 985.898 0.95992
sd 1.214594 3.096336 0.031641 8.86E-04 5.385588 82.27686 0.378112
var 1.47524 9.587295 0.001001 7.84E-07 29.00456 6769.482 0.142969

Y5. 2.318136 9.19489 1.891314 0.003463 31.29208 984.2688 0.506388
S2

5. 1.504103 9.259304 0.001126 0.002938 28.79534 6748.807 0.074434

Var(means) 0.344581 0.300976 6.25E-06 4.61E-05 0.230398 31.92297 0.08733

V5 1.848684 9.56028 0.001133 0.002984 29.02574 6780.73 0.161764

80

Table 21. Design Point Six Data

breach-
count

leakers-
count

numberAv
ailablePBs-
mean

numberInI
nterceptQ-
mean

numberInt
ercepted-
count

rangeAtInt
ercept-
mean

terror-
count

dp6.1 mean 0.681363 2.274549 3.931576 0 31.4509 1020.674 0
sd 0.866995 1.563506 0.023759 0 5.455469 78.84387 0
var 0.75168 2.444552 0.000564 0 29.76214 6216.356 0

dp6.2 mean 1.368737 2.743487 3.932368 0 31.03006 999.7258 0.460922
sd 0.889646 1.637393 0.024151 0 5.49453 85.07972 0.498971
var 0.79147 2.681057 0.000583 0 30.18986 7238.559 0.248972

dp6.3 mean 0.825651 2.326653 3.928298 0 32.56112 1014.396 0.018036
sd 0.877922 1.535232 0.023316 0 5.355042 79.51323 0.133215
var 0.770746 2.356939 0.000544 0 28.67648 6322.354 0.017746

dp6.4 mean 0.699399 2.330661 3.928148 0 32.48096 1027.27 0.012024
sd 0.865341 1.456491 0.027545 0 5.43242 79.62561 0.109102
var 0.748815 2.121367 0.000759 0 29.51118 6340.237 0.011903

dp6.5 mean 2.286573 3.601202 3.930157 0 31.08016 996.812 1.342685
sd 0.918376 1.589144 0.029879 0 5.375236 78.69261 0.646897
var 0.843414 2.52538 0.000893 0 28.89316 6192.526 0.418476

dp6.6 mean 2.418838 3.677355 3.932861 0 31.0521 1000.355 1.440882
sd 0.975053 1.644667 0.022702 0 5.445356 82.96707 0.609506
var 0.950729 2.704928 0.000515 0 29.6519 6883.534 0.371498

dp6.7 mean 1.450902 2.777555 3.930874 0 31.87976 1012.529 0.579158
sd 0.88216 1.5807 0.023089 0 5.392019 84.39548 0.49419
var 0.778207 2.498612 0.000533 0 29.07387 7122.598 0.244223

dp6.8 mean 1.521042 2.875752 3.930306 0 31.86573 1015.996 0.591182
sd 0.918932 1.640536 0.025377 0 5.462174 81.73058 0.492109
var 0.844436 2.691359 0.000644 0 29.83535 6679.888 0.242171

Y6. 1.406563 2.825902 3.930574 0 31.6751 1010.97 0.306613
S2

6. 0.809937 2.503024 0.000629 0 29.44924 6624.507 0.071935

Var(means) 0.454154 0.305169 2.98E-06 0 0.388728 119.8325 0.08592

V6 1.264091 2.808193 0.000632 0 29.83797 6744.339 0.157854

81

Table 22. Design Point Seven Data

breach-
count

leakers-
count

numberAv
ailablePBs-
mean

numberInI
nterceptQ-
mean

numberInt
ercepted-
count

rangeAtInt
ercept-
mean

terror-
count

dp7.1 mean 1.645291 7.759519 1.89009 4.28E-04 31.42285 1004.647 0.072144
sd 1.240398 2.957918 0.032279 0.001552 5.346203 78.52796 0.258986
var 1.538587 8.749282 0.001042 2.41E-06 28.58189 6166.641 0.067074

dp7.2 mean 2.400802 8.242485 1.892843 0.006418 30.82164 997.5002 0.719439
sd 1.313996 2.873385 0.032574 0.077189 5.409186 82.98657 0.449724
var 1.726586 8.256344 0.001061 0.005958 29.25929 6886.771 0.202252

dp7.3 mean 2.348697 8.106212 1.888295 4.01E-04 31.82966 997.2305 0.651303
sd 1.354249 2.826073 0.033307 0.001325 5.372569 82.49487 0.626276
var 1.833989 7.986688 0.001109 1.76E-06 28.8645 6805.403 0.392222

dp7.4 mean 2.072144 8.012024 1.887579 5.33E-04 31.97796 1006.89 0.49499
sd 1.418044 2.997967 0.035824 0.001563 5.53063 80.68806 0.625331
var 2.010849 8.987807 0.001283 2.44E-06 30.58787 6510.564 0.391039

dp7.5 mean 3.368737 9.136273 1.891603 0.008529 30.80962 995.1107 1.695391
sd 1.312706 2.842143 0.037835 0.089369 5.294332 75.73676 0.49839
var 1.723197 8.077778 0.001431 0.007987 28.02995 5736.056 0.248392

dp7.6 mean 3.322645 9.172345 1.890531 3.52E-04 30.82365 996.1598 1.647295
sd 1.232959 2.800308 0.035308 0.001272 5.347837 79.90489 0.526266
var 1.520189 7.841724 0.001247 1.62E-06 28.59936 6384.792 0.276956

dp7.7 mean 2.60521 8.262525 1.890279 4.35E-04 31.6513 995.2613 0.895792
sd 1.333253 2.918783 0.03235 0.001439 5.468296 82.6784 0.500163
var 1.777563 8.519296 0.001047 2.07E-06 29.90226 6835.718 0.250163

dp7.8 mean 2.643287 8.292585 1.88868 3.82E-04 31.57916 994.0101 0.881764
sd 1.311446 2.686902 0.033377 0.001321 5.551805 80.11691 0.518772
var 1.71989 7.219443 0.001114 1.75E-06 30.82254 6418.719 0.269125

Y7. 2.550852 8.372996 1.889988 0.002185 31.36448 998.3512 0.490606
S2

7. 1.731356 8.204795 0.001167 0.001745 29.33096 6468.083 0.090787

Var(means) 0.341241 0.262154 3.08E-06 1.1E-05 0.231364 22.60338 0.079502

V7 2.072597 8.466949 0.00117 0.001756 29.56232 6490.686 0.170289

82

Table 23. Design Point Eight Data

breach-
count

leakers-
count

numberAv
ailablePBs-
mean

numberInI
nterceptQ-
mean

numberInt
ercepted-
count

rangeAtInt
ercept-
mean

terror-
count

dp8.1 mean 0.723447 2.731463 3.938206 0 31.65932 1024.497 0
sd 0.857094 1.541928 0.01898 0 5.419748 83.26708 0
var 0.73461 2.377542 0.00036 0 29.37366 6933.407 0

dp8.2 mean 1.382766 3.462926 3.938368 0 30.84369 1008.828 0.651303
sd 0.981651 1.730928 0.022668 0 5.480122 86.13998 0.477036
var 0.963638 2.996113 0.000514 0 30.03174 7420.095 0.227564

dp8.3 mean 0.851703 2.947896 3.933422 0 32.52104 1014.804 0.014028
sd 0.919475 1.705557 0.022237 0 5.410931 78.23498 0.117724
var 0.845434 2.908926 0.000494 0 29.27817 6120.712 0.013859

dp8.4 mean 0.733467 2.849699 3.936044 0 32.46293 1027.678 0.01002
sd 0.82573 1.669312 0.021015 0 5.435652 80.46576 0.099697
var 0.68183 2.786601 0.000442 0 29.54631 6474.739 0.00994

dp8.5 mean 2.438878 4.402806 3.937111 0 30.92184 1002.08 1.613226
sd 0.9641 1.745928 0.023351 0 5.357491 84.14335 0.530879
var 0.92949 3.048265 0.000545 0 28.70271 7080.103 0.281833

dp8.6 mean 2.380762 4.358717 3.937835 0 30.87575 1005.98 1.609218
sd 1.023475 1.723211 0.023832 0 5.480578 85.7869 0.550278
var 1.047501 2.969457 0.000568 0 30.03674 7359.392 0.302806

dp8.7 mean 1.498998 3.54509 3.936707 0 31.93988 1020.433 0.719439
sd 0.959783 1.671721 0.022591 0 5.454484 83.30476 0.449724
var 0.921184 2.79465 0.00051 0 29.7514 6939.683 0.202252

dp8.8 mean 1.496994 3.547094 3.93666 0 31.93988 1021.278 0.719439
sd 0.953482 1.671665 0.022648 0 5.470659 83.82859 0.449724
var 0.909127 2.794464 0.000513 0 29.92811 7027.232 0.202252

Y8. 1.438377 3.480711 3.936794 0 31.64554 1015.697 0.374248
S2

8. 0.879102 2.834502 0.000493 0 29.58111 6919.42 0.0601

Var(means) 0.4645 0.410495 2.52E-06 0 0.481052 86.05511 0.122942

V8 1.343602 3.244997 0.000496 0 30.06216 7005.476 0.183041

83

APPENDIX C LINEAR REGRESSION

The following overview is taken from Hamilton's Regression With Graphics: A

Second Course in Applied Statistics, chapter two.[Ref. 26]

One of the simplest ways of relating two variables, X and Y, to each other in a

mathematical model is with a linear model. The linear model is merely an expansion of

the equation for a line, which was introduced to most of us at some point, in junior high

school or so, as Y = mX + b, with Y the value of Y, X the value of X, m the slope of the

line, and b the Y-intercept of the line. In this form, X is the predictor of Y, in that X is

the cause and Y the effect—Y=f(X). The linear regression model is an expansion

because it allows for the same sort of linear expression with terms that can be multi-

dimensional. Y = mX + b becomes Yi = β0 + β iXi, with X still the predictor of Y, β0 now

the Y-intercept, and β i the slope. The i subscript denotes individual observations.

The linear equation described is nothing other than the line that best fits the data

collected. The essential means of determining how well a linear regression model

approximates the actual response of Y to changes in X is the comparison of the model's

predicted Y values (Yp
i) to the actual Y values (Yi) in from the data. The difference

between each predicted Y value and its actual value is called a residual error. Since a

prediction can be either above or below the actual value, the residual errors are squared,

so they are all positive, and then all the squared residual errors are added to give an

overall measure of the goodness of the model in predicting Y given X, called the sum of

squared residuals (RSS). More compactly:

RSS = Σe2
i = Σ(Yi – Yp

i)2

The lower the value of RSS, the closer the fit between predictions and data. This leads to

the Ordinary Least Squares (OLS) criterion for selection of β values, which is simply to

select the values of β i that yield the lowest RSS.

Another key measurement of a linear model's goodness is the coefficient of

determination, R2, that gives the proportion of the variance of Y that is explained by X:

R2 = explained variance/total variance = s2
y-pred/s2

y

84

R2 ranges in value from 0 to 1, with a value of 0 meaning the that the changes in the

variable X account for none of the changes in Y, and a value of 1 meaning that changes

in the variable X completely explain the changes in Y. As the sample variance of the

model's predicted Y values gets closer to that of the actual Y values, the model is more

closely replicating the reality it is modeling.

R2 is the "quick look" value that tells whether or not a linear model fits the data

well, but the importance of individual variables within the model can only be ascertained

through an examination of their individual p-values, which are generated in any

regression software output—including Excel. The p-value reflects a given variable's t-

statistic, and gives a measure of how likely it is that a given variable's effect upon output

is statistically significant. If a variable's effect is statistically significant, that means that

its slope term (β i) is non zero, indicating it should be included in the linear model

describing changes in Y.

The development and analysis of regression models is, in practice, more of an art

than a science, but the basic indicators of R2 and individual p-values go a long way

toward determining the goodness of a given result.

85

APPENDIX D. OUTPUT GRAPHICS

Figure 24. Design Point Six Always Best

Figure 25. Advantage of Four Patrol Boats Over Two

Leakers vs Attack Type:
Comparison of Design Points

0

5

10

15

20

1 2 3 4 5 6 7 8

Attack Type

Le
ak

er
s

DP 1

DP 2

DP 3

DP 4

DP 5

DP 6

DP 7

DP 8

Leakers vs Design Point:
Number of Patrol Boats Effect

0
2
4
6
8

10
12
14

1 2 3 4 5 6 7 8

Design Point

Le
ak

er
s

2 PB's

4 PB's

86

Figure 26. Advantage of Higher Intercept Speed

Figure 27. No Clear Difference In Output

Leakers vs Design Point: Intercept Speed Effect

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8

Design Point

Le
ak

er
s

 I Spd = 15

I Spd = 25

Leakers vs Design Point:
 Patrolling Speed Effect

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8

Design Point

Le
ak

er
s

Pat Spd = 2

Pat Spd = 5

87

Figure 28. No Clear (Significant) Difference in Output

Figure 29. No Interaction Between Significant Factors

Leakers vs Design Point: Patrol Pattern Effect

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8

Design Point

Le
ak

er
s

Barrier

Bow Tie

Factor Interaction Plot (Number PB's and Int Spd)

0

5

10

15

20

2 4

Number Patrol Boats

Le
ak

er
s

Low I-Spd

High I-Spd

88

Figure 30. Design Points Six and Eight Are Best

Figure 31. Advantage of Four Patrol Boats Over Two

Breaches vs Attack Type:
Comparison of Design Points

0

1

2

3

4

5

1 2 3 4 5 6 7 8

Attack Type

B
re

ac
he

s

DP 1

DP 2

DP 3

DP 4

DP 5

DP 6

DP 7

DP 8

Breaches vs Design Point:
Number of Patrol Boats Effect

0

1

2

3

4

5

1 2 3 4 5 6 7 8

Design Point

B
re

ac
he

s

2 PB's

4 PB's

89

Figure 32. Advantage of Higher Intercept Speed

Figure 33. No Clear Difference in Output

Breaches vs Design Point: Intercept Speed Effect

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

1 2 3 4 5 6 7 8

Design Point

B
re

ac
he

s

I Spd =15

I Spd = 25

Breaches vs Design Point:
Patrolling Speed Effect

0
0.5

1
1.5

2
2.5

3
3.5

4

1 2 3 4 5 6 7 8

Design Point

B
re

ac
he

s

Pat Spd = 2

Pat Spd = 5

90

Figure 34. No Clear Difference in Output

Figure 35. No Interaction Between Significant Factors

Breaches vs Design Point: Patrol Pattern Effect

0
0.5

1
1.5

2
2.5

3
3.5

4

1 2 3 4 5 6 7 8

Design Point

B
re

ac
he

s

Barrier

Bow Tie

Factor Interaction Plot (Number PB's and Int Spd)

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

2 4

Number Patrol Boats

B
re

ac
he

s

Low I-Spd

High I-Spd

91

Figure 36. Design Points Six and Eight Are Best

Figure 37. Advantage of Four Patrol Boats Over Two

Range at Intercept vs Attack Type:
 Comparison of Design Points

940

960

980

1000

1020

1040

1 2 3 4 5 6 7 8

Attack Type

R
h(

In
t)

DP 1

DP 2

DP 3

DP 4

DP 5

DP 6

DP 7

DP 8

Range at Intercept vs Design Point:
Number of Patrol Boats Effect

940

960

980

1000

1020

1 2 3 4 5 6 7 8

Design Point

R
h(

In
t) 2 PB's

4 PB's

92

Figure 38. Advantage of Higher Intercept Speed

Figure 39. No Clear (Significant) Difference in Output

Range at Intercept vs Design Point:
Intercept Speed Effect

940

960

980

1000

1020

1 2 3 4 5 6 7 8

Design Point

R
h(

In
t) I Spd = 15

I Spd = 25

Range at Intercept vs Design Point:
Patrolling Speed Effect

965
970
975
980
985
990
995

1000
1005

1 2 3 4 5 6 7 8

Design Point

R
h(

In
t) Pat Spd = 2

Pat Spd = 5

93

Figure 40. No Clear Difference in Output

Figure 41. No Interaction Between Significant Factors

Range at Intercept vs Design Point:
 Patrol Pattern Effect

960

970

980

990

1000

1 2 3 4 5 6 7 8

Design Point

R
h(

In
t) Barrier

Bow Tie

Factor Interaction Plot (Number PB's and Int Spd)

920

940

960

980

1000

1020

2 4

Number Patrol Boats

R
h(

In
t) Low I-Spd

High I-Spd

94

THIS PAGE INTENTIONALLY LEFT BLANK

95

LIST OF REFERENCES

1. H. Shelton, Joint Vision 2020, 2000

2. P. Odeen, Transforming Defense: National Security in the 21st Century, Washington,

DC 1997

3. M. Van Crevald, Future War, in Strategy and Force Planning, Newport 2000

4. A. Carter, J. Deutch, P. Zelikow, Catastrophic Terrorism: Tackling the New Danger,

in Foreign Affairs, November/December 1998

5. H. Gehman , Lost Patrol: The Attack on the Cole, in Proceedings, Annapolis Apr

2001

6. D. Weeks, Danger Beyond the Pier, in Proceedings, Annapolis Apr 2001

7. Chief of Naval Operations Message via email correspondence from Commander

Submarine Group Nine Security Officer, October 2001. Comm (360) 396-6949

8. Johns Hopkins University Applied Physics Laboratory, Task Assignment Revision

and Cost Estimate for the SSBN Security Program, Contract N00024-98-D-8124,

Baltimore 1999

9. CSR 16 Message to his Commanding Officers via email correspondence from

Executive Officer USS Alabama (Blue), October 2001. Comm (360) 396-8345

10. A. M. Law, W. D. Kelton, Simulation Modeling and Analysis, Boston 2000

11. email correspondence from Commander Submarine Group Nine Security Officer,

June 2001. Comm (360) 396-6949.

12. Java available at http://java.sun.com

13. Simkit available at http://Diana.org.nps.navy.mil/Simkit

14. K. Stork, Sensors in Object Oriented Discrete Event Simulation, Monterey 1996.

15. D. Barnes, Object-Oriented Programming with Java: An Introduction, New Jersey

2000

96

16. A. Buss, Discrete Event Programming with Simkit, in Simulation News Europe,

August 2001.

17. L. Schruben, Simulation Modeling with Event Graphs, in Communications of the

ACM 26, 1983

18. A. Buss, Basic Event Graph Modeling, Monterey, CA, 2001

19. A. Buss, Component-Based Simulation Modeling, in Proceedings of the 2000

Winter Simulation Conference, 2000

20. A. Buss, Simple Movement and Detection in Discrete-Event Simulation, in Class

Handout for OA 3302, Winter 2001

21. P. Bratley, B. Fox, L. Schrage, A Guide to Simulation, New York 1987

22. DoD Directive 5000.59, DoD Modeling and Simulation (M&S) Management, 1997

23. S. Ross, Introduction to Probability Models, San Diego 1997

24. G. Box, W. Hunter, J. Hunter, Statistics for Experimenters, New York 1978

25. S. Sanchez, P. Sanchez, J. Ramberg, A Framework for Robust System and Process

Design Through Simulation, in Concurrent Design of Products, Manufacturing

Processes and Systems, New York 1998

26. L. Hamilton, Regression with Graphics: A Second Course in Applied Statistics,

Belmont, CA 1992

97

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. CDR David Mackovjak
 Submarine Group Nine

Bangor, Washington

4. Erik W. Johnson
 Johns Hopkins University Applied Physics Laboratory

Submarine Technology Department
Operational Assessments Group
Baltimore, Maryland

5. CDR (sel) James C. Childs
 USS Alabama (BLUE)

Bangor, Washington

6. Professor Arnold Buss
Department of Operations Research
Naval Postgraduate School
Monterey, California

7. Commander Matthew Boensel
Department of Operations Research
Naval Postgraduate School
Monterey, California

8. Kevin Downer
USCG Research Center
Groton, CT

